
The University of Sydney Page 1

Single-cell analysis workshop

Sydney Precision Bioinformatics Group

Workshop presenters: 
Hani Kim 
Yingxin Lin
Shila Ghazanfar



The University of Sydney Page 2

Sydney Precision Bioinformatics Research Group
We share an interest in developing statistical and computational methodologies to tackle the foremost significant 
challenges posed by modern biology and medicine.

Meet our senior and junior research leaders: 

and senior research associates, PhD candidates, Honours and TSP students.

A/Prof. John Ormerod; Prof. Jean Yang; Prof. Samuel Mueller; Dr. Garth Tarr; Dr. Rachel Wang

Find out more:
http://www.maths.usyd.edu.au/bioinformatics/

Shiny apps: http://shiny.maths.usyd.edu.au/

Github:     https://github.com/SydneyBioX

Dr. Ellis Patrick; Dr. Pengyi Yang

http://www.maths.usyd.edu.au/bioinformatics/
http://shiny.maths.usyd.edu.au/
http://www.maths.usyd.edu.au/u/SMS/bioinformatics/
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Roadmap for the workshop

Setting up: 13:30 – 13:45 Google cloud set up

Session 1: 13:45 – 14:15 Single cell analysis overview (scdney)

Session 2: 14:15 – 15:00 Quality control and data integration

AFTERNOON TEA: 1500-1530

Session 3: 15:30 – 16:00 Overview of single-cell downstream analysis

Session 4: 16:00 – 16:45 Downstream analysis: cell type identification, identify marker genes & cell type composition

Extension: cell type identification via supervised classification and single cell trajectory analysis
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Configuring Google Cloud and workshop materials

–Workshop materials: 
https://sydneybiox.github.io/BIS2019_SC/index.html

–Machine 1: 34.68.240.36
–Machine 2: 34.94.37.174
source("/home/user_setup.R")

https://sydneybiox.github.io/BIS2019_SC/index.html
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Exponential growth in single cell RNA seq technologies 

Svensson et al. Nature Protocols (2018) 
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Droplet based technologies are now dominating 

Macosko et al. (2015), Cell

10X Genomics is a commercial provider of 
droplet based scRNAseq platform
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scRNAseq experiments approaching 1 million cells 

Saunders et al., (2018) Cell 

690,000 individual cells from 9 regions 
of adult mouse brain 
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Number of scRNAseq tools also increasing rapidly 

Downloaded from www.scrna-tools.org
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Single-cell RNA-seq analysis
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Components of a typical 
scRNA-seq analysis 
process
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Component 1: Data acquisition 

Software
• CellRanger for 10X Genomics data 
• Macosko’s custom scripts for DropSeq data 
• STAR for alignment plus custom scripts (or there 

is STAR-solo) 

Considerations 
• Single or mix of species? Does it include ERCC 

spike-ins? May need to build a custom reference 
• Barcode and/or UMI sequencing errors –

CellRanger takes care of this automatically 
• Align to exon or exon and intron?  

Input
• BCL or fastq file from the sequencer

Output
• Gene/cell counts matrix 
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Component 2: Data preprocessing – Quality control  

Software
• Seurat (all-purpose single cell R package)
• Scater
• DropletUtils (R package with a number of handy 

utility functions)
• Your own custom scripts

Considerations
• Filter out droplets with doublets – may be difficult 

to find. Can estimate expected rate by doing 
species mixture experiment

Croset (2018), eLife
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Component 2: Data preprocessing – Quality control  

Software
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Component 2: Data preprocessing – Quality control  

Software
• Seurat (all-purpose single cell R package)
• Scater
• DropletUtils (R package with a number of handy 

utility functions)
• Your own custom scripts

Considerations
• Filter out droplets with doublets – may be difficult 

to find. Can estimate expected rate by doing 
species mixture experiment

• Filter out droplets with no cells
• Filter out droplets with damaged cells – look for 

high mitochondrial gene content or high spike-in



The University of Sydney Page 15

Component 2: Data normalisation

Software
• scran for non-full-length datasets (Lun et al. Genome Biology 2016)
• bulk methods for full-length datasets (TPM normalisation)

Normalisation aims to address
• Removing sampling effects
• Scaling count data to obtain correct relative gene expression abundances 

between cells

After normalisation, data matrices are typically log(x+1)-transformed
• Distances represent log-fold changes
• log transformation mitigates (but does not remove) the mean–variance 

relationship in single-cell data
• reduces the skewness of the data

Luecken et al. Molecular Systems Biology 2019
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Component 3: Data integration

Software
• Seurat (all-purpose single cell R package) for very 

basic normalization 
• Batch effect correction

• mnnCorrect
• Harmony
• Liger
• scMerge
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scMerge motivation - Liver fetal development time course dataset

GSE87795 
Su et al.

E9.5 E10.5 E11.5 E12.5 E13.5 E14.5 E15.5 E16.5 E17.5
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E9.5 E10.5 E11.5 E12.5 E13.5 E14.5 E15.5 E16.5 E17.5

GSE87795 
Su et al.

GSE90047 Yang et 
al.

GSE87038 Dong et 
al.

GSE96981 Camp et 
al.

N = 320 cells

N = 389 cells

N = 79 cells

N = 448 cells

Liver fetal development time course datasets
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tSNE of liver fetal development time course datasets

Highlighted by cell types Highlighted by batches

Challenge:
Strong “batch effect”



The University of Sydney Page 20

Breaking observed data into components

𝒀 = 𝑿𝜷 +𝑾𝜶+ 𝝐

The data we observe

For n cells with data collected for m genes

Biologically relevant 
variation
cell types

p wanted variables

Unwanted variation
batch and technical 

effects
k unwanted variables

Random noise
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scMerge algorithm

𝒀 = 𝑿𝜷 +𝑾𝜶+ 𝝐

RUVIII algorithm Molania et al. (2019), Nuclei Acids Res

Estimated with replicates by factor analysis

Estimated by stably expressed genes by factor analysis
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scMerge algorithm

Pseudo-
replicates

Find Mutual Nearest Clusters 
as pseudo-replicates

Clustering for each batch 
(k-means by default)

Frame as pseudo-replicate 
information
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Coming back to our motivational data –
Liver fetal development time course datasets
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More information

scMerge R package and website: 
https://sydneybiox.github.io/scMerge/

PNAS: 
https://doi.org/10.1073/pnas.1820006116

https://sydneybiox.github.io/scMerge/
https://doi.org/10.1073/pnas.1820006116
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SingleCellExperiment Object

Amezquita et al. Nature Methods 2019
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We will try this soon … 

14:15 – 15:00 Quality control and 
data integration
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Roadmap for the workshop

Setting up: 13:30 – 13:45 Google cloud set up

Session 1: 13:45 – 14:15 Single cell analysis overview (scdney)

Session 2: 14:15 – 15:00 Quality control and data integration

AFTERNOON TEA: 1500-1530

Session 3: 15:30 – 16:00 Overview of single-cell downstream analysis

Session 4: 16:00 – 16:45 Downstream analysis: cell type identification, identify marker genes & cell type composition

Extension: cell type identification via supervised classification and single cell trajectory analysis
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Summary and Q&A
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Afternoon Tea
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Component 4: Cell type identification

Science questions
• What cell types are present in the dataset? 

• Can we identify the cell types?



The University of Sydney Page 31

Component 4: Cell type identification

Science questions
• What cell types are present in the dataset?

• Can we identify the cell types?

Analysis techniques
• Visualization (dimension reduction)

• Clustering (unsupervised learning)

• Classification (supervised learning)
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Dimension reduced plot of our data (tSNE plot) 
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k-means clustering 
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Clustering algorithms for scRNA-seq 

k-means

Hierarchical

RaceID

SC3

CIDR

countClust

RCA

SIMLR

Clus
ter

ing

Luke Zappia, et al. PLoS Comp. Bio. 2018

25%+
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Similarity metric is the core of clustering algorithm 

k-means

Hierarchical

RaceID

SC3

CIDR

countClust

RCA

SIMLR

Spearman

Pearson

Euclidean

Manhattan

Maximum

Key question: is there a similarity metric that performs (on average) 
better for clustering single cells based on their transcriptome?

Correlation-based

Distance-based
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k-means Clustering on GSE60361

k-means

Zeisel A, et al. Science 2015

pre-defined cell types

k-means Clustering on GSE60361
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Evaluation framework

Agreement to pre-defined classes:
Normalized Mutual Information (NMI) 

Adjusted Rand Index (ARI)
Fowlkes-Mallows Index (FM)

Jaccard Index (Jaccard)

Taiyun Kim
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Evaluation results (against the pre-defined cell types)

Multiple datasets

PhD student: Taiyun Kim
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Evaluation results (against the pre-defined cell types)

On average, correlation-based metrics improved on distance-based metrics by 31.5% (NMI), 39.6% (ARI), 16% (FM), 23% (Jaccard)

Evaluation results (against the pre-defined cell types) using other 
measures
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Linnorm normalisation

SAVER imputation

Additional processing

Agreement to pre-defined classes:
Normalized Mutual Information (NMI) 

Adjusted Rand Index (ARI)
Fowlkes-Mallows Index (FM)

Jaccard Index (Jaccard)

Account for data scaling and zero-counts
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Account for normalisation and imputation
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SIMLR

Improving the state-of-the-art clustering method using correlation metric
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Evaluation results of SIMLR with Pearson or Euclidean metrics
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Component 5: Downstream analysis

Science questions
• Which genes are differentially expressed between 

cell types? 

• What are the marker genes for each cell type? 

• What is the cell type composition? 

• Are the cells transitioning from one state to 

another? 
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Differential expression testing: Differences between single cell and bulk 
RNAseq

– Advantage of single-cell:
Account for cellular heterogeneity: DE tests can be now performed within cell-identity clusters across 
experimental conditions.

– Unique challenges for single-cell:
– Dropout
– High cell-to-cell variability

– Bulk DE methods
– edgeR
– limma
– DESeq2

– Single-cell DE methods
– MAST
– ZINB-WaVE
– DECENT
– …
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Soneson and Robinson (2018) Nature methods

DE methods comparisons for scRNAseq
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Cell type composition

Can we conclude that there are more 
cholangiocytes than mesenchymal cells? 



The University of Sydney Page 51

scDC simulates uncertainty in cell-type 
proportions via bootstrapping

Main components:
- Sample with replacement from count 

matrix, stratified by patient 
- Cell type identification via clustering 

(PCA -> Kmeans (Pearson correlation)
- Calculations of cell – type proportions 

standard error from bootstrap samples
- Calculation of pooled log-linear model 

using Rubin’s pooled estimate

Single cell Differential Composition (scDC) 
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– Examined two synthetic datasets 
constructed from two sets of real 
experimental data — Pancreas 
(T2D vs healthy) and Neuronal 
(developing mouse) 

– In pancreas dataset
- confirmed the original finding that 1 

of the 4 subjects has a higher beta 
cell value, as IQR non overlap

– In neuronal dataset 
- Revealed new finding that 

progenitor cells percentage increase 
over time

Single cell Differential Composition (scDC) 
Supplementary
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We will try this soon… 

16:00 – 16:45 Downstream analysis: identify marker 
genes & cell type composition 
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Extension: 
1. cell type identification via 
supervised classification
2. single cell trajectory analysis
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An alternative approach of cell type identification: supervised learning

Clustering (unsupervised learning)
§ Group the cells that are “close” to 

each other
§ Annotated each cluster by DE genes 

or other characteristics
§ Identify the novel cell type

Classification (supervised learning)
§ Required reference labelled datasets
§ Predict cell types label directly 
§ What if there are cell types that are not 

in the reference data?
Labelled train data

Unlabelled test data

Train Predictor
Apply 

predictor
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scClassify: Hierarchical Classification

Step 1: Constructing cell type 
hierarchical tree:

We use hierarchical ordered partitioning and 
collapsing hybrid (HOPACH) to generate the cell type 
hierarchical tree based on the reference dataset.

Macrophage Monocytesnon−classic−monocyteosteoclast DC immature−DCmature−DC pDC dysf−cd4 NKExhausted Cd8+ cellstransitionalRegulatory T−cells Tfh CytotoxicityMemory T−cells naive B cell Plasma cell

DC

Monocyte
T cells + NK cells

T cells + NK cells + B cell

van der Laan, M. J. and Pollard, K. S. (2003), Journal of Statistical Planning and Inference.
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scClassify: Hierarchical Classification

Step 2: Feature selection at each 
branch point.

Macrophage Monocytesnon−classic−monocyteosteoclast DC immature−DCmature−DC pDC dysf−cd4 NKExhausted Cd8+ cellstransitionalRegulatory T−cells Tfh CytotoxicityMemory T−cells naive B cell Plasma cell

DC

Monocyte
T cells + NK cells

T cells + NK cells + B cell
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scClassify: Hierarchical Classification

Step 3: Performing correlation-
based weighted kNN for each 
level of  the cell type 
hierarchical tree: 

Macrophage Monocytesnon−classic−monocyteosteoclast DC immature−DCmature−DC pDC dysf−cd4 NKExhausted Cd8+ cellstransitionalRegulatory T−cells Tfh CytotoxicityMemory T−cells naive B cell Plasma cell
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scClassify: Hierarchical Classification

Macrophage Monocytesnon−classic−monocyteosteoclast DC immature−DCmature−DC pDC dysf−cd4 NKExhausted Cd8+ cellstransitionalRegulatory T−cells Tfh CytotoxicityMemory T−cells naive B cell Plasma cell

Cell ?

Step 3: Performing correlation-
based weighted kNN for each 
level of  the cell type 
hierarchical tree: 
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scClassify: Hierarchical ClassificationscClassify

Macrophage Monocytesnon−classic−monocyteosteoclast DC immature−DCmature−DC pDC dysf−cd4 NKExhausted Cd8+ cellstransitionalRegulatory T−cells Tfh CytotoxicityMemory T−cells naive B cell Plasma cell

Cell 
T_B_NK

Cell ?

Step 3: Performing correlation-
based weighted kNN for each 
level of  the cell type 
hierarchical tree: 
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Macrophage Monocytesnon−classic−monocyteosteoclast DC immature−DCmature−DC pDC dysf−cd4 NKExhausted Cd8+ cellstransitionalRegulatory T−cells Tfh CytotoxicityMemory T−cells naive B cell Plasma cell

Cell 
T_B_NK

Cell 
T_NK

scClassify: Hierarchical Classification

Step 3: Performing correlation-
based weighted kNN for each 
level of  the cell type 
hierarchical tree: 
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Macrophage Monocytesnon−classic−monocyteosteoclast DC immature−DCmature−DC pDC dysf−cd4 NKExhausted Cd8+ cellstransitionalRegulatory T−cells Tfh CytotoxicityMemory T−cells naive B cell Plasma cell

Cell 
T_NK

Cell 
CD8 T

scClassify: Hierarchical Classification

Step 3: Performing correlation-
based weighted kNN for each 
level of  the cell type 
hierarchical tree: 
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Macrophage Monocytesnon−classic−monocyteosteoclast DC immature−DCmature−DC pDC dysf−cd4 NKExhausted Cd8+ cellstransitionalRegulatory T−cells Tfh CytotoxicityMemory T−cells naive B cell Plasma cell

Cell Exhausted
CD8 T cell

Cell 
CD8 T

scClassify: Hierarchical Classification

Step 3: Performing correlation-
based weighted kNN for each 
level of  the cell type 
hierarchical tree: 
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Macrophage Monocytesnon−classic−monocyteosteoclast DC immature−DCmature−DC pDC dysf−cd4 NKExhausted Cd8+ cellstransitionalRegulatory T−cells Tfh CytotoxicityMemory T−cells naive B cell Plasma cell

Intermediate

scClassify: Hierarchical Classification

Step 3: Performing correlation-
based weighted kNN for each 
level of  the cell type 
hierarchical tree: 
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Macrophage Monocytesnon−classic−monocyteosteoclast DC immature−DCmature−DC pDC dysf−cd4 NKExhausted Cd8+ cellstransitionalRegulatory T−cells Tfh CytotoxicityMemory T−cells naive B cell Plasma cell

unassignedscClassify: Hierarchical Classification

Step 3: Performing correlation-
based weighted kNN for each 
level of  the cell type 
hierarchical tree: 
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scClassify

Try scClassify: https://sydneybiox.github.io/scClassify/
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Trajectory inference
Why trajectory analysis? 

– Cells may not be sufficiently be described by a discrete classification system such as clustering
– Biological processes drive the development are usually continuous process
– Trajectory inference therefore can be used to model 

• the transitions between cell identities
• Branching differentiation process
• Dynamic gene regularization model

What is trajectory inference? 
– Interpret single-cell data as a snapshot of a continuous process.

Typical steps involved in trajectory inference: 
– Reduce the dimensionality of the single cell data 
– Finding paths through the reduced dimension space, by minimizing the changes between 

neighboring cells
– Order the cells by pseudotime
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Comparisons of pseudotime inference methods 

Saelens et al., (2019) Nature Biotechnology
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Slingshot example (Street et al., 2018)  

Three stages: 
1. Reduced dimension of the data
2. Inference of the global lineage structure. Uses cluster-based minimum 

spanning tree 
3. Inference of pseudotime variables for cells along each lineage. Fits 

simultaneous principal curves 
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Summary
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