fitNEMoE0.Rd
Cpp function: fitting NEMoE paramters. (observed likelihood, penalized likelihood, complete likelihood, penalized complete likelihood) in all levels.
fitNEMoE0( X, seg, Z, y, K, lambda1, lambda2, alpha1, alpha2, V_init, W_init, beta_max, EM_opt, itmax, itmin, adapt, btr, stop_all, verbose, early_stop = FALSE )
X | an aggregated data matrix (n*P) of input in experts network (rbind of all levels input). |
---|---|
seg | an integer vector of length in each level (L). |
Z | a data matrix (n*q) of input in gating network. |
y | a vector of response (n). |
K | A number of latent class. |
lambda1 | aggregated penalty lambda parameters in experts network(P*K). |
lambda2 | penalty parameters lambda in gating network(q*1). |
alpha1 | penalty parameters alpha in experts network(L*K). |
alpha2 | penalty parameter alpha in gating network(1). |
V_init | initial parameters in gating network((q+1)*K). |
W_init | aggregated initial parameters in experts network (cbind of all levels) ((P+L)*K). |
beta_max | A number of maximal of coefficients to avoid divergence of during the fitting. |
EM_opt | A integer indicate methods for EM algorithm. 0="EM", 1 = "CEM", 2 = "SEM", 3= "SAEM", 4="GEM". |
itmax | maximal numbers of iteration in fitting NEMoE. |
itmin | minimal numbers of iteration in fitting NEMoE. |
adapt | A boolean variable indicates whether to use adaptive NEMoE. |
btr | A boolean variable indicates whether to use backtracking during fitting NEMoE. |
stop_all | A boolean variable indicates whether to stop by (likelihood converge)&(parameters converge) |
verbose | A boolean variable indicates whether to show PLL during each iteration. |
early_stop | A boolean variable indicates whether to stop when one latent class have select zero variables (to save time). |
A matrix of fitting result.