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Sydney Precision Bioinformatics Group
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Sydney Precision Bioinformatics Research Group

We share an interest in developing statistical and computational methodologies to tackle the foremost significant 
challenges posed by modern biology and medicine.

Meet our senior and junior research leaders

and senior research associates, PhD candidates, Honours and TSP students: 25

Find out more: http://www.maths.usyd.edu.au/bioinformatics/

Get interactive: http://shiny.maths.usyd.edu.au/

Jean Yang

Samuel Muller

John Ormerod

Pengyi Yang

Ellis Patrick

Rachel Wang

Garth Tarr

Kitty Lo
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Roadmap for the workshop

- Setting up: 1:15 – 1:30 Google cloud set up

- Session 1: 1:30 – 2:00 Single cell analysis overview (scdney)

- Session 2: 2:00 – 2:45 Quality control and data integration

- Session 3: 2:45 – 3:45 Cell type identification via cluster analysis

- Session 4: 3:45 – 4:30 Downstream analysis: identify marker genes & cell type 
composition

- Extension: cell type identification via supervised classification and single cell trajectory 
analysis

Workshop presenters in each session: Jean Yang, Kevin Wang, Pengyi Yang, Yingxin Lin
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Configuring Google Cloud

–Machine 1: 34.69.169.142

–Machine 2: 34.94.220.230

source("/home/user_setup.R")
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Exponential growth in single cell RNA seq technologies 

Svensson et al. Nature Protocols (2018) 
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Droplet based technologies are now dominating 

Macosko et al. (2015), Cell

10X Genomics is a commercial provider of 

droplet based scRNAseq platform
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scRNAseq experiments approaching 1 million cells 

Saunders et al., (2018) Cell 

690,000 individual cells from 9 regions 

of adult mouse brain 
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Number of scRNAseq tools also increasing rapidly 

Downloaded from www.scrna-tools.org
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Single-cell RNA-seq analysis
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Components of a typical 

scRNA-seq analysis 

process
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Component 1: Data acquisition 

Software
• CellRanger for 10X Genomics data 

• Macosko’s custom scripts for DropSeq data 

• STAR for alignment plus custom scripts (or there 

is STAR-solo) 

Considerations 
• Single or mix of species? Does it include ERCC 

spike-ins? May need to build a custom reference 

• Barcode and/or UMI sequencing errors –

CellRanger takes care of this automatically 

• Align to exon or exon and intron?  

Input
• BCL or fastq file from the sequencer

Output
• Gene/cell counts matrix 
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Component 2: Data preprocessing – Quality control  

Software
• Seurat (all-purpose single cell R package)

• Scater

• DropletUtils (R package with a number of handy 

utility functions)

• Your own custom scripts

Considerations
• Filter out droplets with doublets – may be difficult 

to find. Can estimate expected rate by doing 

species mixture experiment

Croset (2018), eLife
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Component 2: Data preprocessing – Quality control  

Software
• Seurat (all-purpose single cell R package)

• Scater

• DropletUtils (R package with a number of handy 

utility functions)

• Your own custom scripts

Considerations
• Filter out droplets with doublets – may be difficult 

to find. Can estimate expected rate by doing 

species mixture experiment

• Filter out droplets with no cells
• Filter out droplets with damaged cells – look for 

high mitochondrial gene content or high spike-in
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Component 3: Data integration

Software
• Seurat (all-purpose single cell R package) for very 

basic normalization 

• Batch effect correction

• mnnCorrect

• ZINB-Wave
• scMerge
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scMerge motivation - Liver fetal development time course dataset

GSE87795 

Su et al.

E9.5 E10.5 E11.5 E12.5 E13.5 E14.5 E15.5 E16.5 E17.5
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E9.5 E10.5 E11.5 E12.5 E13.5 E14.5 E15.5 E16.5 E17.5

GSE87795 

Su et al.

GSE90047 Yang et 

al.

GSE87038 Dong et 

al.

GSE96981 Camp et 

al.

N = 320 cells

N = 389 cells

N = 79 cells

N = 448 cells

Liver fetal development time course datasets
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tSNE of liver fetal development time course datasets

Highlighted by cell types Highlighted by batches

Challenge:

Strong “batch effect”
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Breaking observed data into components

The data we observe

For n cells with data collected for m genes

Biologically relevant 

variation

cell types

p wanted variables

Unwanted variation

batch and technical 

effects

k unwanted variables

Random noise
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scMerge algorithm

RUVIII algorithm Molania et al. (2019), Nuclei Acids Res

Estimated with replicates by factor analysis

Estimated by stably expressed genes by factor analysis
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scMerge algorithm

Pseudo-

replicates

Find Mutual Nearest Clusters 

as pseudo-replicates

Clustering for each batch 
(k-means by default)

Frame as pseudo-replicate 

information
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Coming back to our motivational data –

Liver fetal development time course datasets
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More information

scMerge R package and website: 

https://sydneybiox.github.io/scMerge/
PNAS: 
https://doi.org/10.1073/pnas.1820006116

https://sydneybiox.github.io/scMerge/
https://doi.org/10.1073/pnas.1820006116
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We will try this soon … 

2:00 – 2:45 Quality control and 

data integration
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Component 4: Cell type identification

Science questions

• What cell types are present in the dataset? 

• Can we identify the cell types?
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Phase 3: Cell assignment

Science questions

• What cell types are present in the dataset?

• Can we identify the cell types?

Analysis techniques

• Visualization (dimension reduction)

• Clustering (unsupervised learning)

• Classification (supervised learning)



The University of Sydney Page 27

Dimension reduced plot of our data (tSNE plot) 
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k-means clustering 
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Clustering algorithms for scRNA-seq 

k-means

Hierarchical

RaceID

SC3

CIDR

countClust

RCA

SIMLR

Luke Zappia, et al. PLoS Comp. Bio. 2018

25%+
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Similarity metric is the core of clustering algorithm 

k-means

Hierarchical

RaceID

SC3

CIDR

countClust

RCA

SIMLR

Spearman

Pearson

Euclidean

Manhattan

Maximum

Key question: is there a similarity metric that performs (on average) 

better for clustering single cells based on their transcriptome?

Correlation-based

Distance-based
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k-means Clustering on GSE60361

k-means

Zeisel A, et al. Science 2015

pre-defined cell types

k-means Clustering on GSE60361
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Evaluation framework

Agreement to pre-defined classes:

Normalized Mutual Information (NMI) 

Adjusted Rand Index (ARI)

Fowlkes-Mallows Index (FM)

Jaccard Index (Jaccard)

Taiyun Kim
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Evaluation results (against the pre-defined cell types)

Multiple datasets

PhD student: Taiyun Kim
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Evaluation results (against the pre-defined cell types)

On average, correlation-based metrics improved on distance-based metrics by 31.5% (NMI), 39.6% (ARI), 16% (FM), 23% (Jaccard)

Evaluation results (against the pre-defined cell types) using other 

measures
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Linnorm normalisation

SAVER imputation

Additional processing

Agreement to pre-defined classes:

Normalized Mutual Information (NMI) 

Adjusted Rand Index (ARI)

Fowlkes-Mallows Index (FM)

Jaccard Index (Jaccard)

Account for data scaling and zero-counts
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Account for normalisation and imputation
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SIMLR

Improving the state-of-the-art clustering method using correlation metric
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Evaluation results of SIMLR with Pearson or Euclidean metrics
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C
e
lls

Genes

PCA…

C
e
lls

PCs

Problem of PCA is that PCs can only be linear combination of genes:

𝑧𝑖1 = 𝜙11𝑥𝑖1 + 𝜙21𝑥𝑖2 +⋯+ 𝜙𝑝1𝑥𝑖𝑝

Extension: Methods for accounting high-dimensionality of scRNA-seq
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Input 

layer

Output 

layer

Encode 

layer

Hidden 

layer

Hidden 

layer

Autoencoder, a deep learning model, allows nonlinear 

dimension reduction

Random projection based ensemble of autoencoders allow 

multiple views of the scRNA-seq data from different 

“angles”

Dimension reduction using an ensemble of autoencoders
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Autoencoder inputRaw input

Ensemble of autoencoders – does it work (with k-means)?
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More benchmark using advanced clustering algorithm

Geddes T et al., Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis, BMC Bioinformatics (2019)

More benchmark of autoencoder ensemble with PCA using k-means & 

SIMLR
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We will try this soon… 

2:45 – 3:45 Cell type identification via 

clustering analysis (scClust)
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scClassify: Algorithm

Feature selection at each branch 

point.

Features are selected from : 

• Differential expression analysis;

• Differential variability analysis;

• Differential distribution analysis;

• Chi-squared test,

……

Macrophage Monocytesnon−classic−monocyteosteoclast DC immature−DCmature−DC pDC dysf−cd4 NKExhausted Cd8+ cellstransitionalRegulatory T−cells Tfh CytotoxicityMemory T−cells naive B cell Plasma cell

DC

Monocyte
T cells + NK cells

T cells + NK cells + B cell

PhD student: Yingxin Lin
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Component 5: Downstream analysis

Science questions

• Which genes are differentially expressed between 

cell types? 

• What are the marker genes for each cell type? 

• What is the cell type composition? 

• Are the cells transitioning from one state to 

another? 
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Cell type proportions

Can we conclude that there are more 

cholangiocytes than mesenchymal cells? 
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scDC simulates uncertainty in cell-type 
proportions via bootstrapping

Main components:

- Sample with replacement from count 
matrix, stratified by patient 

- Cell type identification via clustering 
(PCA -> Kmeans (Pearson correlation)

- Calculations of cell – type proportions 
standard error from bootstrap samples

- Calculation of pooled log-linear model 
using Rubin’s pooled estimate

Single cell Differential Composition (scDC) 

PhD student: Yue Cao 
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– Examined two synthetic datasets 
constructed from two sets of real 
experimental data — Pancreas 
(T2D vs healthy) and Neuronal 
(developing mouse) 

– In pancreas dataset

- confirmed the original finding that 1 
of the 4 subjects has a higher beta 
cell value, as IQR non overlap

– In neuronal dataset 

- Revealed new finding that 
progenitor cells percentage increase 
over time

Single cell Differential Composition (scDC) 

Supplementary
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Differences between single cell and bulk RNAseq

– Single cell gene expressions show a bimodal expression pattern – abundant genes 
are either highly expressed or undetected. 

– This can be technical (drop-outs) or biological (transcriptional bursts). 

– Drop-outs lead to technical zeroes in the data. 

– Technical zeroes are due to low capture efficiency in scRNAseq experiments. 

– Many methods have been proposed to deal with drop-outs 
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Differential expression analysis 

– Simple statistical test

– Wilcoxon rank test, t-test

– Methods developed for bulk RNAseq DE

– DESeq2

– EdgeR

– Voom-Limma

– scRNA specific

– MAST

– DECENT

– D3E

– …. many more!
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Soneson and Robinson (2018) Nature methods

DE methods comparisons for scRNAseq
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Pseudotime inference

– Why pseudotime? 

– Sometimes cells do not occupy discrete states, rather cell states may follow a smooth trajectory 

– Example: stem cell differentiation 

– What is pseudotime? 

– Abstract unit of progress along some trajectory 

– Typical steps involved in pseudotime inference: 

– Reduce the dimensionality of the data 

– Build some kind of lineage structure

– Order the cells in pseudotime
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Comparisons of pseudotime inference methods 

Saelens et al., (2019) Nature Biotechnology
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Slingshot example (Street et al., 2018)  

Two stages: 

1. Inference of the global lineage structure. Uses cluster-based minimum 
spanning tree 

2. Inference of pseudotime variables for cells along each lineage. Fits 
simultaneous principal curves 
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-We will try this soon… 

3:45 – 4:30 Downstream analysis: identify marker genes & 

cell type composition 

Extension: cell type identification via supervised 

classification and single cell trajectory analysis


