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We share an interest in developing statistical and computational methodologies to tackle the foremost
significant challenges posed by modern biology and medicine.

Sydney Precision Bioinformatics Group

Our group consists of research leaders, research associates, PhD candidates, Honours and TSP students.

A/Prof. John Ormerod; Prof. Jean Yang; Prof. Samuel Mueller; Dr. Garth Tarr; Dr. Rachel Wang

Find out more:

http://www.maths.usyd.edu.au/bioinformatics/

Shiny apps:  http://shiny.maths.usyd.edu.au/
GitHub: https://github.com/SydneyBioX

Dr. Ellis Patrick; Dr. Pengyi Yang
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Roadmap for the workshop

12:30 — 12:40: Google cloud set up
12:40 — 13:00 Overview and Quality Control slides
13:45 — 14:00 scMerge data integration

14:45 — 15:00 Cell type identification via clustering, marker genes and
composition

Scheduled to finish at 15:30

The University of Sydney
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Setting up

* https://sydneybiox.github.io/cornell_sc_workshop /

* Go to address: hitp://34.68.240.36/

* Type code into the console

The University of Sydney
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Overview of single-cell technology
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Single cell technology

Single cells
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Cellular heterogeneity

Bulk cells

* Resolving tissue and cellular heterogeneity

* Bulk RNA-Seq measures averaged signals
from millions of cells

* scRNA-Seq measures individual cells

Goldman, S. L., MacKay, M., Afshinnekoo, E., Melnick, A. M., Wu, S., & Mason, C. E. (2019). The Impact of Heterogeneity on Single-Cell Sequencing. Frontiers in Genetics, 10.
https: //community.10xgenomics.com/t5/10x-Blog/Single-Cell-RNA-Seq-An-Introductory-Overview-and-Tools-for /ba-p /547
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Exponential growth in single cell RNA-Seq

technologies
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Study publication date

Svensson et al. Nature Protocols (2018)
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Droplet based technologies are now dominating
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The University of Sydney

Cell  Microparticle 5.RNA hybridization

@ 4.Cell lysis
—
(in seconds)

Macosko et al. (2015), Cell

10X Genomics is a commercial provider of

droplet-based scRNA-Seq platform
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scRNA-Seq experiments approaching 1million cells
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Single-cell RNA-Seq analysis
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Differences between single-cell and bulk RNA-Seq

* In scRNA-Seq, abundant genes are either highly expressed or
undetected

* Biological (transcriptional bursts)

* Technical (drop-outs due to low capture efficiency)
* An abundance of zeroes

* Bimodal distribution of genes

* Many methods have been proposed to deal with drop-outs

The University of Sydney Page 11
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Which tool should you use?
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What biological questions are you trying to answer?

* Can | get there using special modelling or just simple visualisation?

* Follow a well-established pipeline from Bioconductor
https://osca.bioconductor.org/ or find suitable tools from
https: / /www.scrna-tools.org /

* Use our tools and pipelinel

The University of Sydney Page 14
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Components of a

typical
scRNA-Seq analysis

The University of Sydney
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Component 1: Data acquisition

Alignment

Data acquisition

De-duplication

Quantification

Input

* BCL or FASTQ file from the sequencer

Output
* Gene-by-cell counts matrix

Cell 1 Cell 2 Cell 3
ACTB 1 4 6
GAPDH (5 0 2
LBR 0 3 0
HIFTA 0 1 0

The University of Sydney

Software

* CellRanger for 10X Genomics data
* Macosko’s custom scripts for DropSeq data

* STAR for alignment plus custom scripts (or

there is STAR-solo)

Considerations

Single or mix of species?¢ Does it include
ERCC spike-ins?2 May need to build a custom
reference

Barcode and/or UMI sequencing errors —
CellRanger takes care of this automatically
Align to exon or exon and intron2
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Component 2: Data preprocessing — Quality control

Data Preprocessing N

Quality control Data normalisation

Doublet detection Cell size factor
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The University of Sydney
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tSNE2

Component 3: Data integration

Before scMerge

0] r

The University of Sydney

tSNE2

After scMerge

cell_types

® cholangiocyte
Endothelial Cell
Epithelial Cell
Hematopoietic
hepatoblast/hepatocyte
Immune cell
Mesenchymal Cell
Stellate Cell

batch

O GSE87038
GSE87795
GSE90047
GSE96981

X O +
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Component 4: Cell type identification
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Component 5: Downstream analysis

V- : D
Downstream analysis
Marker Cell type Trajectory
identification composition analysis
Differential expression
analysis
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©00L °6°0

Gene A Gene B

The University of Sydney

Science questions

Which genes are differentially expressed
between cell types?

What are the marker genes for each cell type?
What is the cell type composition?

Are the cells transitioning from one state to

another?
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Quality control
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Component 2: Data preprocessing — Quality control

/ Data Preprocessing )
Quality control
Qo

o
OO cell cycle effects

Data normalisation

Doublet detection o 8o Tacirs

% technical effects
o f.

Empty and bad quality

K cell detection /

The University of Sydney

Software

* Seurat (all-purpose single cell R package)

* Scater

* DropletUtils (R package with a number of
handy utility functions)

* Your own custom scripts

Considerations

* Filter out droplets with doublets — may be
difficult to find

Page 22



Log counts

Component 2: Data preprocessing — Quality control

Waterfall plot of read counts (log)
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Software

Seurat (all-purpose single cell R package)
Scater

DropletUtils (R package with a number of
handy utility functions)

Your own custom scripts

Considerations

Filter out droplets with doublets — may be
difficult to find
Filter out droplets with no cells
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Component 2: Data preprocessing — Quality control

Software
* Seurat (all-purpose single cell R package)
* Scater

30

* DropletUtils (R package with a number of

| handy utility functions)
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scMerge: merging scRNA-Seq data
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Liver fetal development time course data
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Su et al.
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The Open Access Publisher Genomics
BMC Genomics. 2017; 18: 946. PMCID: PMC5715535
Published online 2017 Dec 4. doi: 10.1186/s12864-017-4342-x PMID: 29202695

Single-cell RNA-Seq analysis reveals dynamic trajectories during
mouse liver development

Xianbin Su,"’f1 Yi Shi,#1 Xin Zcou,”"‘1 Zhao-Ningﬂ,’iI1 Gangcai Xie,2 JeanY. H. Ya_ng,3 Chong-Chao Wu,1
Xiao-Fangﬂ,1 Kun-Yan He,1 Qing Luo,1 Yu-Lan Qu,1 Na Wang,1 Lan Wang,1 and Ze-Guang Hanm A

Author information » Article notes » Copyright and License information » Disclaimer



Liver fetal development time course data

https://sydneybiox.github.io/scMerge/articles/case_study/Mouse_Liver_Data.html

—
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tSNE2

Liver fetal development time course data

Before scMerge cell_types
® cholangiocyte

407 6’ Endothelial Cell
Epithelial Cell
Hematopoietic

hepatoblast/hepatocyte
Immune cell

® Mesenchymal Cell
Stellate Cell

batch

O GSE87038
GSE87795
GSE90047
GSE96981

X O +
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Breaking observed data into components

For n cells with data collected for m genes

The data we observe Biologically relevant Unwanted variation  Random noise
variation

e.g. batch and
e.g. cell types technical effects

The University of Sydney Page 29



Estimating unwanted variation

Estimated by stably expressed genes by factor analysis

Y=Xp+Wa+ €

Estimated with replicates by factor analysis

Molania et al. (2019), Nuclei Acids Res

The University of Sydney Page 30



Batch 1 Batch 2

Igorithm | . * =%
scMerge algorithm | . "1 |_ .~
Batch 4
L AN
Clustering for each batch r 5
(k-means by default) w L ?Ji PseUdO'
Replicate 1 re p I Icqtes
Replicate 2 [ }———+
Find Mutual Nearest Clusters
as pseudo-replicates il o o
Replicate 3 g:::g 3 (1) 8
Frame as pseudo-replicate caclo o 1

information

The University of Sydney @Q Q_Q,Q QQ,Q Page 31
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tSNE2

Liver fetal development time course data

Before scMerge After scMerge

0] r

tSNE2

The University of Sydney

cell_types

cholangiocyte
Endothelial Cell
Epithelial Cell
Hematopoietic
hepatoblast/hepatocyte
Immune cell
Mesenchymal Cell
Stellate Cell

batch

O GSE87038
GSE87795
GSE90047
GSE96981

X O +
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More information

PNAS:

https://doi.org/10.1073/pnas.1820006116

scMerge R package and website:

https://sydneybiox.github.io/scMerge/

DN A

i3

scMerge leverages factor analysis, stable expression,
and pseudoreplication to merge multiple single-cell

RNA-seq datasets

Yingxin Lin®, Shila Ghazanfar*', Kevin Y. X. Wang®’, Johann A. Gagnon-Bartsch®, Kitty K. Lo®, Xianbin Su®*,

Ze-Guang Han®*, John T. Ormerod®, Terence P. Speed"9, Pengyi Yang*®?, and Jean Yee Hwa Yang

a.b.2

*School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia; "Charles Perkins Centre, University of Sydney, Sydney, NSW 2006,
Australia; ‘Department of Statistics, University of Michigan, Ann Arbor, MI 48109; Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai
Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; *Collaborative Innovation Center of Systems Biomedicine,
Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; ‘Bioinformatics Division, Walter and Eliza Hall Institute
of Medical Research, Parkville, VIC 3052, Australia; and “Department of Mathematics and Statistics, University of Melbourne, Melbourne, VIC 3010,
Australia

Edited by Wing Hung Wong, Stanford University, Stanford, CA, and approved April 2, 2019 (received for review November 26, 2018)

Concerted of multiple of single-cell RNA
sequencing (RNA-seq) data promises further biological insights
that cannot be uncovered with individual datasets. Here we
present scMerge, an algorithm that i multiple single-cell
RNA-seq datasets using factor analysis of stably expressed genes
and pseudoreplicates across datasets. Using a large collection of
public datasets, we benchmark scMerge against published meth-
ods and that it i provides il cell
type by factors; scMerge can also
enhance biological dlswvery lhwugh robust data integration,

som chmses

portions of cell types, e.g., as a result of fluorescence-activated
cell sorting applied to a set of samples; mnnCorrect addresses
this by cslimaling a set of “mutual nearest neighbors,” a map-
ping of individual cells between batches or datasets, but it can
be unstable due to the selection of individual pairs of ¢
opposed to the more robust selection of pairs of cell clusters.

Results
scMerge. To enable effective integration of multiple sScRNA-seq
datasets, scMerge leverages factor analysis of single-cell stably

The University of Sydney

STATISTICS

Reference

scMerge (R} &

Vignette Case Study ~

scMerge

scMerge is a R package for merging and normalising single-cell RNA-Seq datasets.

‘“Installation

The installation process could take up to 5 minutes, depending if you have some of the packages pre-installed.

# Some CRAN packages required by scMerge
install.packages(c("ruv", "rsvd", "igraph",
devtools::install_github("theislab/kBET")

"pdist", "proxy", "foreach", "doSNOW", "distr",

# Some BioConductor packages required by scMerge
# try http:// if https:// URLs are not supported
source("https://bioconductor.org/biocLite.R")
biocLite(c("SingleCellExperiment”, "M3Drop"))

# Installing scMerge and the data files using
devtools::install_github("SydneyBioX/scMerge.data")
devtools::install_github("SydneyBioX/scMerge")

Vignette

You can find the vignette at our website: https://sydneybiox.github.io/scMerge/index.html.

“Rcpp”, "RcppEi

ge 33
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Cell type identification - clustering
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Component 4: Cell type identification

é@ Cell type identification 2
Unsupervised Semi-supervised Supervised
apparoach apparoach apparoach

®

O) 20

3o 6 >

OF ocC\ass
OYAON

083

A )

The University of Sydney

Science questions

» What cell types are present in the dataset?

« Can we identify the cell types?

Analysis techniques
» Visualization (dimension reduction)
» Clustering (unsupervised learning)

» Classification (supervised learning)
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{ISNE dimension reduction
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tSNE dimension reduction + clustering

t—SNE plot Cell type label by clustering algorithm
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Clustering algorithms for scRNA-seq

k-means

Hierarchical

RacelD

SC3

CIDR

countClust

RCA

SIMLR

The University of Sydney
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Luke Zappia, et al. PLoS Comp. Bio. 2018
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Which clustering method should | pick?

* Different methods make different assumptions, which may or
may not be satisfied by your data

* Try a few different ones to understand what makes a method
work well for your own data

* We did the same and found similarity metrics has a huge
impact on performance of methods

The University of Sydney Page 39



Similarity metric is the core of clustering algorithm

Key question: is there a similarity metric that performs (on average)
k-means .. better for clustering single cells based on their transcriptome?
. ) ¢" """"""" ‘x\
Hierarchical ! Euclidean \
| |
| G S
Racel D 1 8ij = (zig - zjg)z; : ,’ N\
| \Jg ! [/ Pearson \
|
SC3 E i : I > A NN :
| Manhattan S
CIDR ! ¢ o ]
! sij = glzig—xjgl; o Spearman !
countClust : o £GPl ) i
I ) I [ B s e I
v Maximum 1 I
RCA i LN ! .
I ] Correlation-based
SIMLR \ .
e _»/ Distance-based
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scClust: improved clustering methods using

correlation metrics

| SIMIR |
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Chuetal. (CT; GSE75748
Gokee et al. (GSE82187
Darmanis et al. (GSE67835
Chu et al. (TC; GSE75748
Zeisel et al. (GSE60361
Guo et al. (GSE63818
Tirosh et al. (GSE70630
Deng et al. (GSE45719

G

(

(

+ o+ 4+ o+ o+ 4+

)
)
)
)
)
)
g
Habib et al. (GSE84371)
Baron et al. (GSE84133)
)
)
)
)
)
)
)
)
)

Villani et al. (GSE94820

Liet al. (GSE86146

Scialdone et al. (E-MTAB-4079
Petropoulos et al. (E-MTAB-3929
Tirosh et al. (GSE72056

Camp et al. (GSE75140

Close et al. (GSE93593
Kowalczyk et al. (GSE59114
Breton et al. (GSE89232

+ 4+ + +

+

+

!I””“”HHI“HE

+

%

2

0.0

o
(V)
o
N
o
o

0.8

2
O
AR

Visualization and analysis of single-cell rna-seq data by kernel-based similarity

learning. Nature Methods, 14(4), 414.
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scClassify

Feature selection at each
branch point.

Features are selected from :

» Differential expression
analysis;

 Differential variability
analysis;

 Differential distribution
analysis;

» Chi-squared test,

PhD student: Yingxin Lin

The University of Sydney

Macrophage

Monocyte

pSC

T cells + NK cells

Regulatory T-cells Tt

U}
cell

T cells + NK cells + B cell \
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Downstream analysis
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Component 5: Downstream analysis

@ Downstream analysis B Science q uestions
Marker Cell type Trajectory
identificati iti : : :
o.f!,:?f.;.lf,i‘,',‘ii‘.on et L + Which genes are differentially expressed
analysis
O
ccoceeszo 4.. between cell types?
Gene A Gene B

« What are the marker genes for each cell
type?

« What is the cell type composition?

 Are the cells transitioning from one state

to another?

The University of Sydney Page 44



Compare these proportions
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Single cell Differential Composition (scDC)

scDC simulates uncertainty in cell-type b Resample + clustering

proportions via bootstrapping

Resampling 1

Cc GLM d

Pooled by Rubin’s rules

a - —  Coeff Estimate ... Std.
log(uy) = Bo + Brxs + -+ + Brex Error
Main components: SoRNA-seq 10g(y) = fo + Buxs + -+ fix | o 5506 0.0318
- Sample with replacement from count > _ . : . =
matrix, stratified by patient Resampling N e e
- Cell type identification via clustering i loglun) =Fo+ Fum++Ak | © e oome
(PCA -> Kmeans (Pearson ) | T }
correlation) A
- Cell — type proportions standard error ‘ Y J
from bootstrap Samp|eS Composition analysis of f Visualisation of bootstrap result
- Calculation of pooled log-linear model © Kemebieemunies alpha beta ducta
using Rubin’s pooled estimate = Tt
AR .+
RRE TSRET T
[ i Thldl 4] L] .
PhD student: Yue Cao SERE LS i

The University of Sydney
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Evaluation results (against the pre-defined cell types)
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PhD student: Taiyun Kim
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Dimension reduction using an ensemble of
autoencoders

5048 2048 Autoencoder, a deep learning model, allows nonlinear
dimension reduction

Random projection based ensemble of autoencoders allow
multiple views of the scRNA-seq data from different

QLIRS “angles” Random Encoded
I R projections datasets

(Il;fb';“é( )
/AW

e X
—>> 0,5:© =
scRNA-seq ! “ 69%9¢ @ l Ensemble

output

Hidden Hidden
layer layer

Output
layer layer

Autoencoders Clusterings
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Geddes T et al., Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis, BMC Bioinformatics (2019)



Evaluation framework

o Evaluation
measures

Sl e Data preparation
GSEASTI9 Deng et al. (2014) Mouse 300 8 Pre-processing > . ] Clustering algorithm
GSE63818 Guo et al. (2015) Humn 328 37 ] ~ il -
GSE67835 Darmanis er al. (2015) Human 420 8 arity
GSES2187 Gokee et al. (2016) Mouse 705 10 L — metrics
GSE7S140  Camperal (2015)  Human 734 13 [Stratmed mampllng] : .
GSE75748 (TC) Chu et al. (2016) Human 758 6
GSES4133 Baron et al. (2016) Mouse 82 13
GSES9232 Breton et al. (2016) Human 957 4 3
GSE75748 (CT)  Chu et al. (2016) Human 1018

-
GSE94820 Villani et al. (2017) Human 1140 5
E-MTAB-4079  Scialdone er al. (2016)  Mouse 12205 4
GSES84371 Habib et al. (2016) Mouse 1402 8
GSES9114 Kowalczyk et al. (2015) Mouse 1428 6
E-MTAB-3929  Petropoulos et al. (2016) Human 1529 S
GSE93593 Close et al. (2017) Human 1733 4

Impact of similarity metrics on single-
Cree  peetoms s s cell RNA-seq data clustering

GSE70630 Tirosh eral (2016b)  Human 4347 § . . . AP .
GSET2056 Tirosh er al. (20162) Human 4645 7 Taiyun Kim, Irene Rui Chen, Yingxin Lin, Andy Yi-Yang Wang,

Broad Portal Habib et al. (2017) Mouse 13313 26 Jean Yee Hwa Yang, Pengyi Yang
Broad Poral Habib er al. (2017) Human 14963 19
GSER1905 Shekhar ef al (2016) Mouse 27499 19

Briefings in Bioinformatics, bby076,

Taiyun Kim
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Ensemble of autoencoders — does it work (with k-

means)?

= Raw input m Autoencoder input

Human brain (Broad Institute)
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Differences between single cell and bulk RNAseq

— Single cell gene expressions show a bimodal expression
pattern — abundant genes are either highly expressed or
undetected.

— This can be technical (drop-outs) or biological (transcriptional
bursts).

— Drop-outs lead to technical zeroes in the data.

— Technical zeroes are due to low capture efficiency in scRNAseq
experiments.

— Many methods have been proposed to deal with drop-outs
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Differential expression analysis

- Simple statistical test
— Wilcoxon rank test, t-test

— Methods developed for bulk RNAseq DE
- DESeq?2

- EdgeR

— Voom-Limma
— scRNA specific

- MAST

— DECENT

- D3E
- .... many more!
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Trajectory analysis

* Progenitor ¢ Precursor ¢ Immature e Mature

* Inference on a dynamic process
such as cell cycle /differentiation
-5.0 ~
L[] [ ] [ ] !’.
* Dimensional reduction to learn -
s -7.5 =~
the key genes 5 !
E
Q
© -10.0
* Trees are then grown to connect
the cell types .
1 1 1 1 1
. . o - -2 0 2 -
B e et o o o Sl sl sy v o e Component 2
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