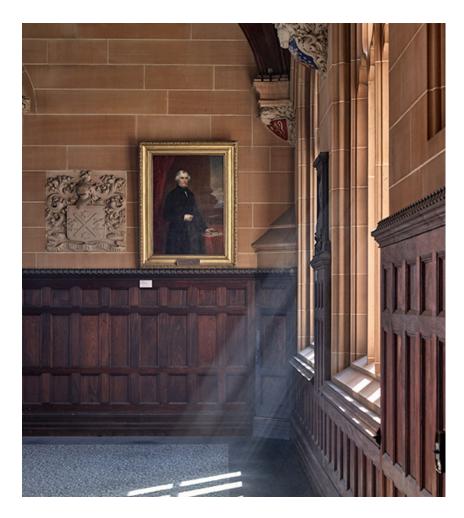
Single-cell analysis workshop

Yue Cao, Kevin Wang

Sydney Precision Bioinformatics Group School of Mathematics and Statistics



Sydney Precision Bioinformatics Group

We share an interest in developing statistical and computational methodologies to tackle the foremost significant challenges posed by modern biology and medicine.

Our group consists of research leaders, research associates, PhD candidates, Honours and TSP students.

A/Prof. John Ormerod; Prof. Jean Yang; Prof. Samuel Mueller; Dr. Garth Tarr; Dr. Rachel Wang

Dr. Ellis Patrick; Dr. Pengyi Yang

Find out more:				
http://www.	maths.usyd.edu.au/bioinformatics/			
Shiny apps:	<u>http://shiny.maths.usyd.edu.au/</u>			
GitHub:	<u>https://github.com/SydneyBioX</u>			

Roadmap for the workshop

12:30 – 12:40: Google cloud set up

12:40 – 13:00 Overview and Quality Control slides

13:45 – 14:00 scMerge data integration

14:45 – 15:00 Cell type identification via clustering, marker genes and composition

Scheduled to finish at 15:30

• https://sydneybiox.github.io/cornell_sc_workshop/

• Go to address: <u>http://34.68.240.36/</u>

• Type code into the console

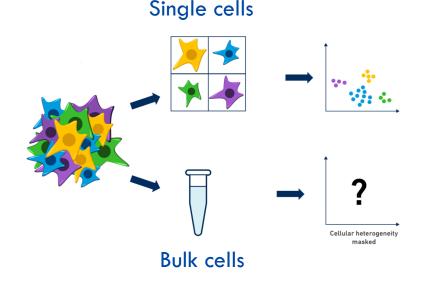
Overview of single-cell technology

Single cell technology

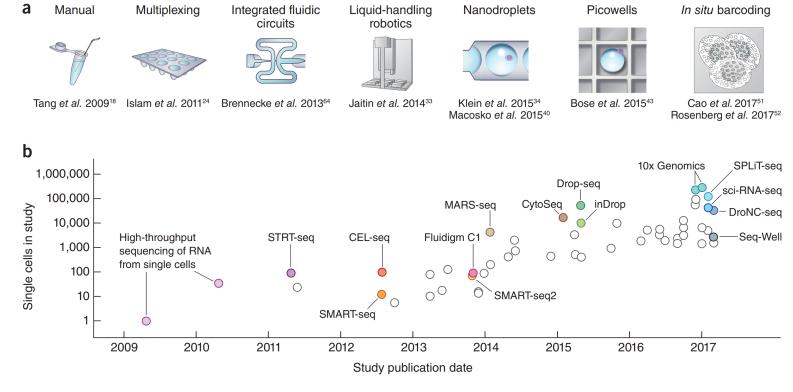
• Resolving tissue and cellular heterogeneity

• Bulk RNA-Seq measures averaged signals from millions of cells

• scRNA-Seq measures individual cells

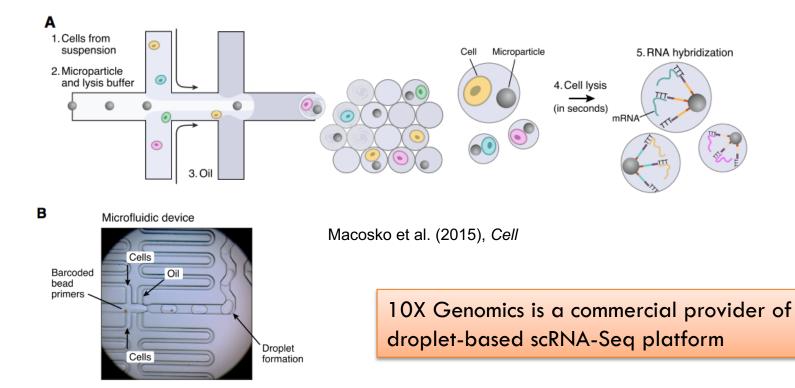


Exponential growth in single cell RNA-Seq technologies



Svensson et al. Nature Protocols (2018)

Droplet based technologies are now dominating



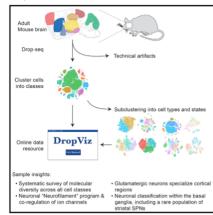
scRNA-Seq experiments approaching 1 million cells

Resource

Cell

Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain

Graphical Abstract



Authors

Arpiar Saunders, Evan Z. Macosko, Alec Wysoker, ..., Sara Brumbaugh, David Kulp, Steven A. McCarroll

Correspondence

asaunders@genetics.med.harvard.edu (A.S.), emacosko@broadinstitute.org (E.Z.M.), mccarroll@genetics.med.harvard. edu (S.A.M.)

In Brief

Sampling across multiple brain regions identifies hundreds of transcriptionally distinct groups of cells and reveals largescale features of brain organization and neuronal diversity.

Saunders et al.

690,000 individual cells from 9 regions of adult mouse brain

al. CHROMIUM™ Transcrip

Transcriptional Profiling of 1.3 Million Brain Cells with the Chromium Single Cell 3' Solution

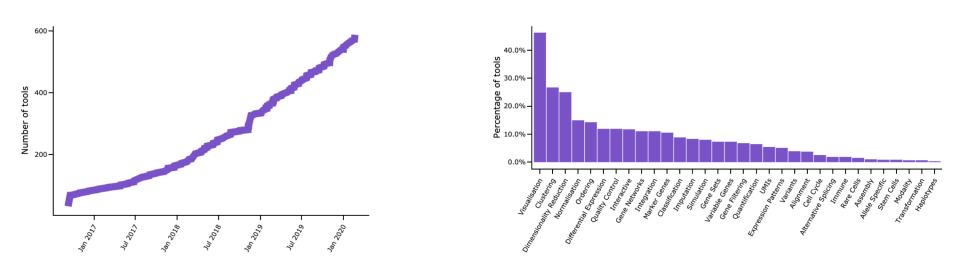


Single-cell RNA-Seq analysis

Differences between single-cell and bulk RNA-Seq

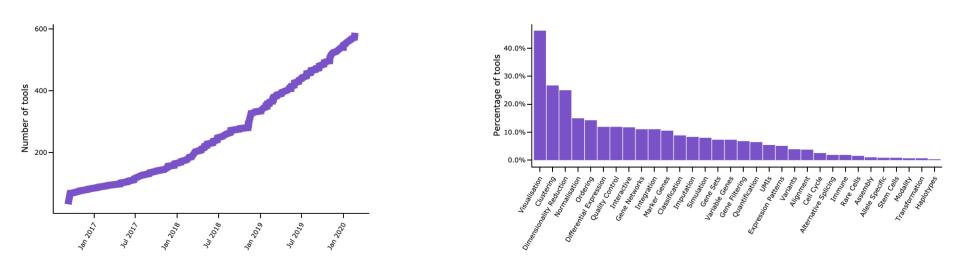
- In scRNA-Seq, abundant genes are either highly expressed or undetected
- Biological (transcriptional bursts)
- Technical (drop-outs due to low capture efficiency)
 - An abundance of zeroes
 - Bimodal distribution of genes
- Many methods have been proposed to deal with drop-outs

Rapid increase of scRNA-Seq tools



www.scrna-tools.org

Which tool should you use?



www.scrna-tools.org

The University of Sydney

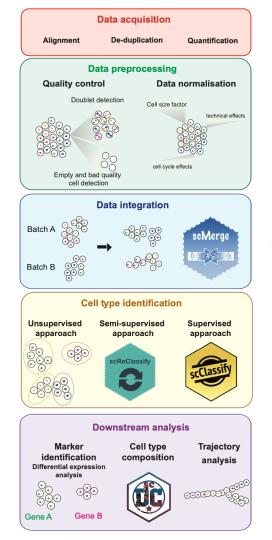
What biological questions are you trying to answer?

• Can I get there using special modelling or just simple visualisation?

 Follow a well-established pipeline from Bioconductor <u>https://osca.bioconductor.org/</u> or find suitable tools from <u>https://www.scrna-tools.org/</u>

• Use our tools and pipeline!

Components of a typical scRNA-Seq analysis



Component 1: Data acquisition

Data acquisition				
Alignment	De-duplication	Quantification		

Input

• BCL or FASTQ file from the sequencer

Output

• Gene-by-cell counts matrix

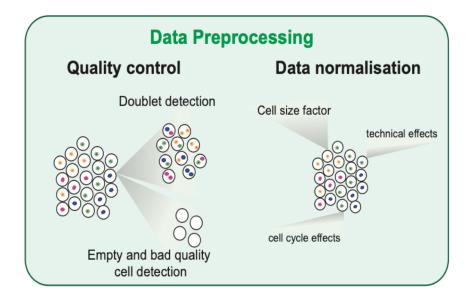
	Cell 1	Cell 2	Cell 3
АСТВ	1	4	6
GAPDH	5	0	2
LBR	0	3	0
HIF1A	0	1	0

Software

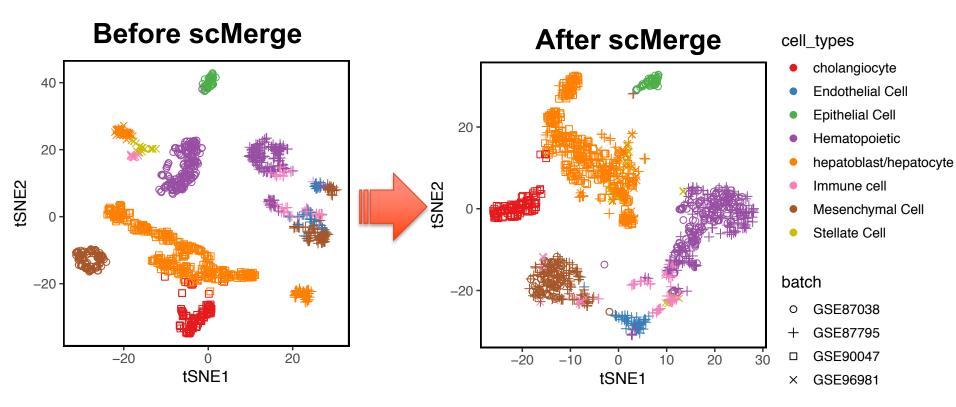
- CellRanger for 10X Genomics data
- Macosko's custom scripts for DropSeq data
- STAR for alignment plus custom scripts (or there is STAR-solo)

Considerations

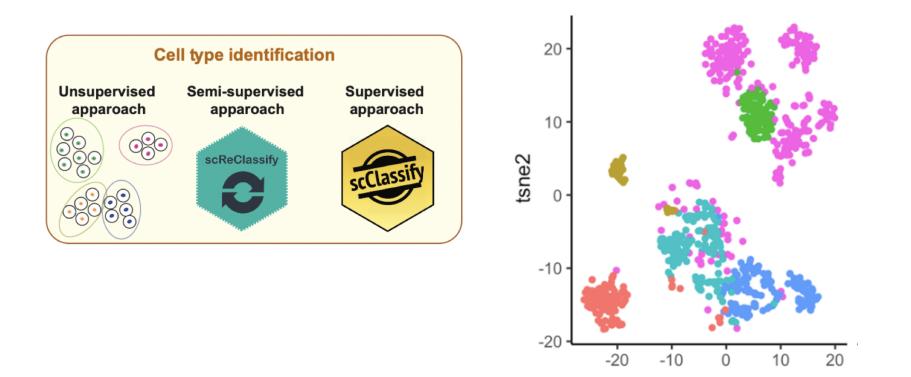
- Single or mix of species? Does it include ERCC spike-ins? May need to build a custom reference
- Barcode and/or UMI sequencing errors CellRanger takes care of this automatically
- Align to exon or exon and intron?



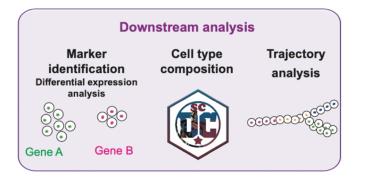
Component 3: Data integration



Component 4: Cell type identification



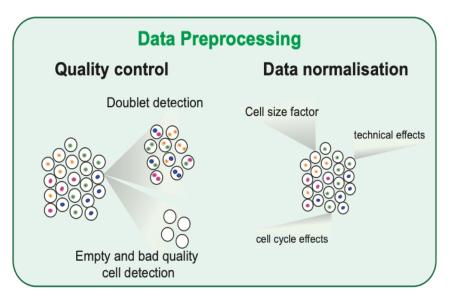
Component 5: Downstream analysis



Science questions

- Which genes are differentially expressed between cell types?
- What are the marker genes for each cell type?
- What is the cell type composition?
- Are the cells transitioning from one state to another?

Quality control

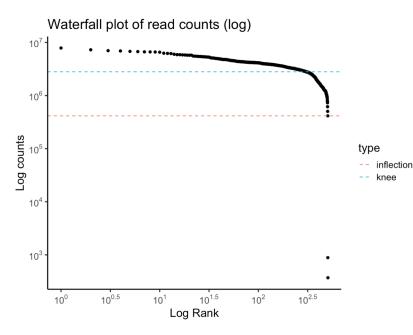


Software

- Seurat (all-purpose single cell R package)
- Scater
- DropletUtils (R package with a number of handy utility functions)
- Your own custom scripts

Considerations

 Filter out droplets with doublets – may be difficult to find

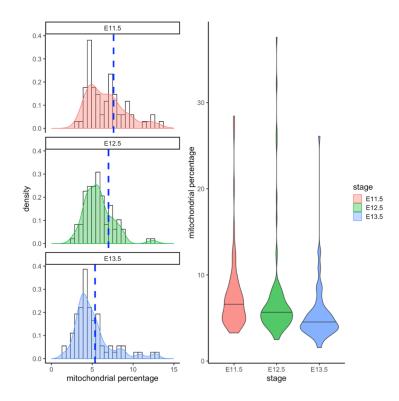


Software

- Seurat (all-purpose single cell R package)
- Scater
- DropletUtils (R package with a number of handy utility functions)
- Your own custom scripts

Considerations

- Filter out droplets with doublets may be difficult to find
- Filter out droplets with no cells



Software

- Seurat (all-purpose single cell R package)
- Scater
- DropletUtils (R package with a number of handy utility functions)
- Your own custom scripts

Considerations

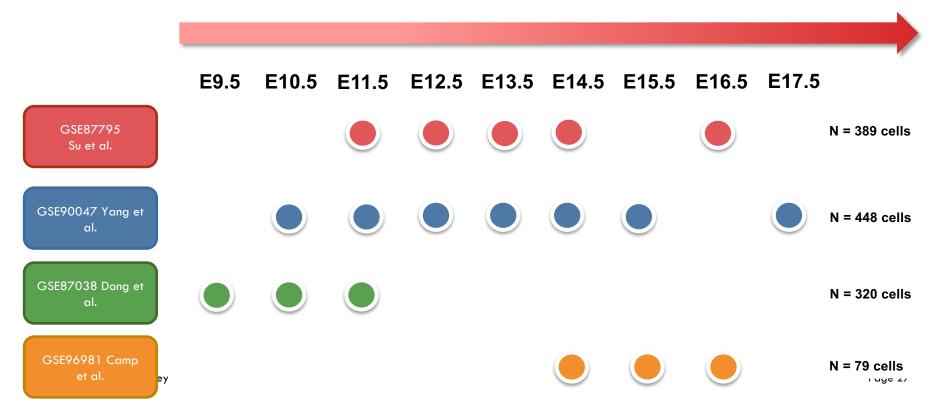
- Filter out droplets with doublets may be difficult to find
- Filter out droplets with no cells
- Filter out droplets with damaged cells look for high mitochondrial gene content or high spike-in

scMerge: merging scRNA-Seq data

Author information ► Article notes ► Copyright and License information ► Disclaimer

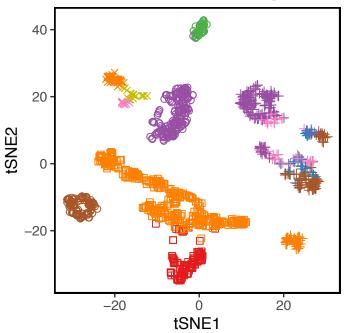
Liver fetal development time course data

https://sydneybiox.github.io/scMerge/articles/case_study/Mouse_Liver_Data.html



Liver fetal development time course data

Before scMerge



cell_types

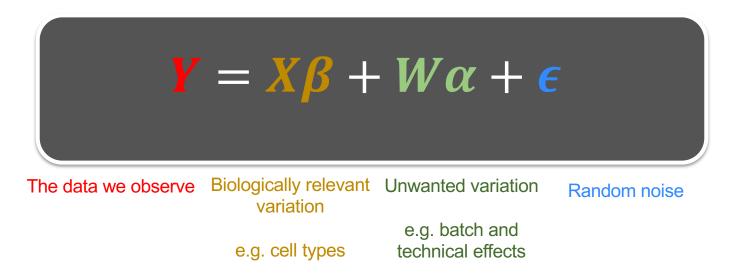
- cholangiocyte
- Endothelial Cell
- Epithelial Cell
- Hematopoietic
- hepatoblast/hepatocyte
- Immune cell
- Mesenchymal Cell
- Stellate Cell

batch

- GSE87038
- + GSE87795
- □ GSE90047
- × GSE96981

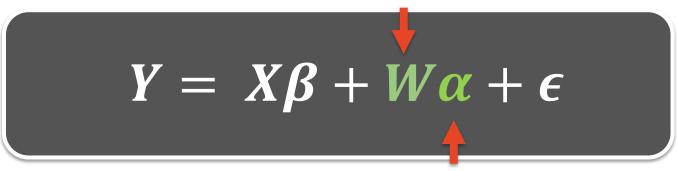
Breaking observed data into components

For *n* cells with data collected for *m* genes



Estimating unwanted variation

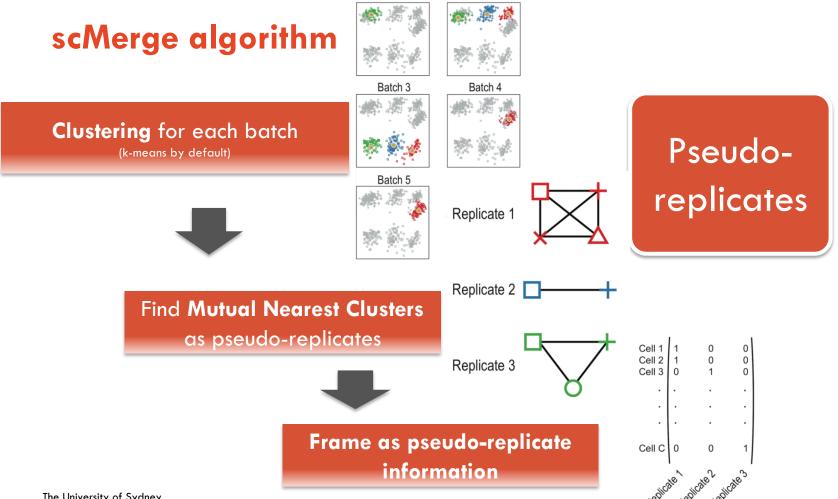
Estimated by stably expressed genes by factor analysis



Estimated with **replicates** by factor analysis

Molania et al. (2019), Nuclei Acids Res

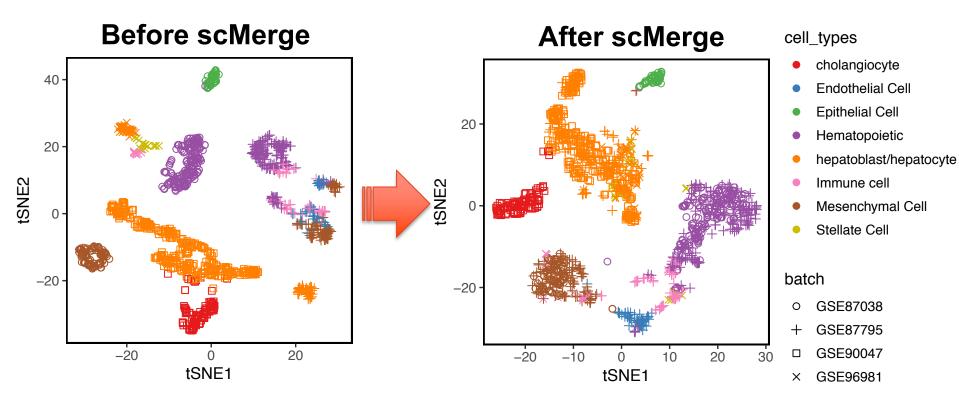
The University of Sydney



Batch 1

Batch 2

Liver fetal development time course data



More information

PNAS: https://doi.org/10.1073/pnas.1820006116

scMerge leverages factor analysis, stable expression, and pseudoreplication to merge multiple single-cell RNA-seq datasets

Yingxin Lin^a, Shila Ghazanfar^{a.b.1}, Kevin Y. X. Wang^{a.1}, Johann A. Gagnon-Bartsch^c, Kitty K. Lo^a, Xianbin Su^{d,e}, Ze-Guang Han^{d,e}, John T. Ormerod^a, Terence P. Speed^{f,g}, Pengyi Yang^{a.b.2}, and Jean Yee Hwa Yang^{a.b.2}

*School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia; "Charles Perkins Centre, University of Sydney, SW 2006, Australia; "Department of Statistics, University of Michigan, Ann Arbor, MI 48109; "Rey Laborator of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; "Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; "Collaborative Innovation, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; and "Department of Mathematics and Statistics, University of Melbourne, Melbourne, VIC 3010, Australia

Edited by Wing Hung Wong, Stanford University, Stanford, CA, and approved April 2, 2019 (received for review November 26, 2018)

Concerted examination of multiple collections of single-cell RNA sequencing (RNA-seq) data promises further biological insights that cannot be uncovered with individual datasets. Here we present scMerge, an algorithm that integrates multiple single-cell RNA-seq datasets using factor analysis of stable expressed genes and pseudoreplicates across datasets. Using a large collection of public datasets, we benchmark scMerge against published methods and demonstrate that it consistently provides improved cell type separation by removing unwanted factors; scMerge can also enhance biological discovery through robust data integration, which we them the terms the forease of development at integration.

portions of cell types, e.g., as a result of fluorescence-activated cell sorting applied to a set of samples; mnnCorrect addresses this by estimating a set of "mutual nearest neighbors," a mapping of individual cells between batches or datasets, but it can be unstable due to the selection of individual pairs of cells, as opposed to the more robus selection of pairs of cell custers.

Results

scMerge. To enable effective integration of multiple scRNA-seq datasets, scMerge leverages factor analysis of single-cell stably

scMerge R package and website:

https://sydneybiox.github.io/scMerge/

scMerge 0.1.14 🕋 Vignette Reference Case Study -

scMerge

scMerge is a R package for merging and normalising single-cell RNA-Seq datasets.

[©] Installation

The installation process could take up to 5 minutes, depending if you have some of the packages pre-installed.

Some CRAN packages required by scMerge install.packages(c("ruv", "rsvd", "igraph", "pdist", "proxy", "foreach", "doSNOW", "distr", "Rcpp", "RcppEi devtools::install_github("theislab/KBET")

Some BioConductor packages required by scMerge # try http:// if https:// URLs are not supported source("https://biocnductor.org/bioclite.R") bioclite(c("SingleCellExperiment", "M3Drop"))

Installing scMerge and the data files using devtools::install_github("SydneyBioX/scMerge.data") devtools::install_github("SydneyBioX/scMerge")

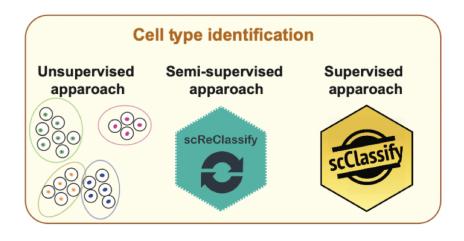
Vignette

You can find the vignette at our website: https://sydneybiox.github.io/scMerge/index.html.

PNAS

Cell type identification - clustering

Component 4: Cell type identification



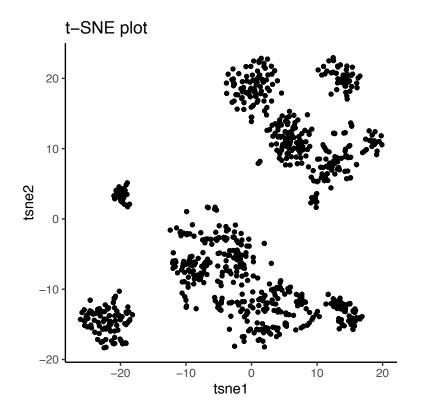
Science questions

- What cell types are present in the dataset?
- Can we identify the cell types?

Analysis techniques

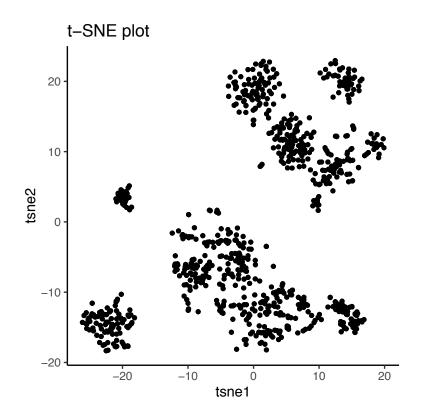
- Visualization (dimension reduction)
- Clustering (unsupervised learning)
- Classification (supervised learning)

tSNE dimension reduction

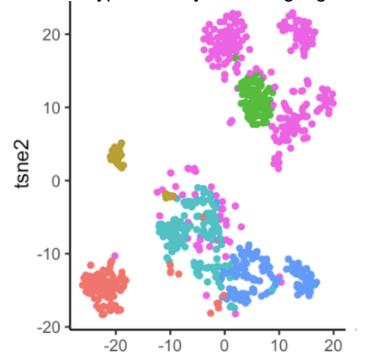


How many cell types are there? What are the cell types?

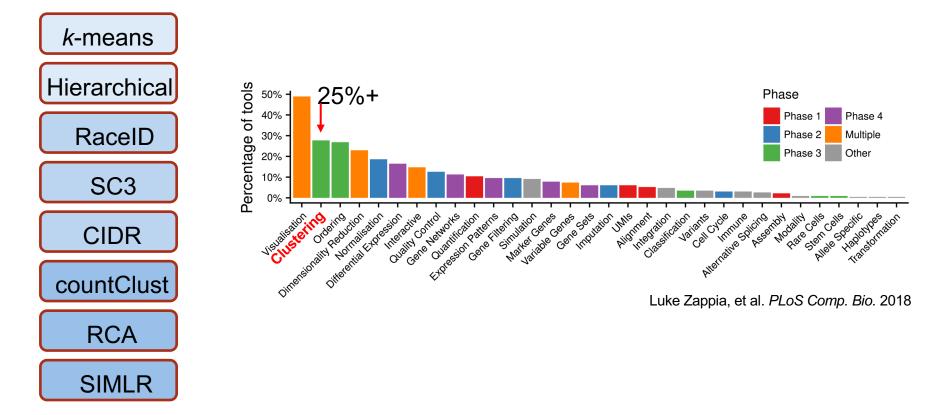
tSNE dimension reduction + clustering



Cell type label by clustering algorithm



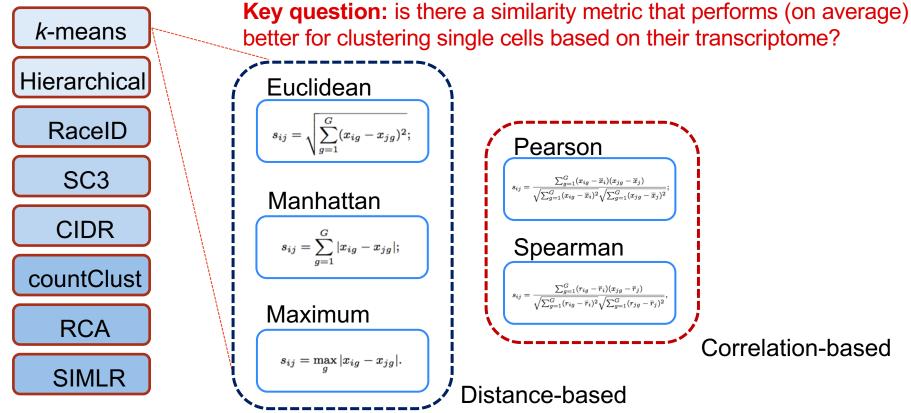
Clustering algorithms for scRNA-seq



Which clustering method should I pick?

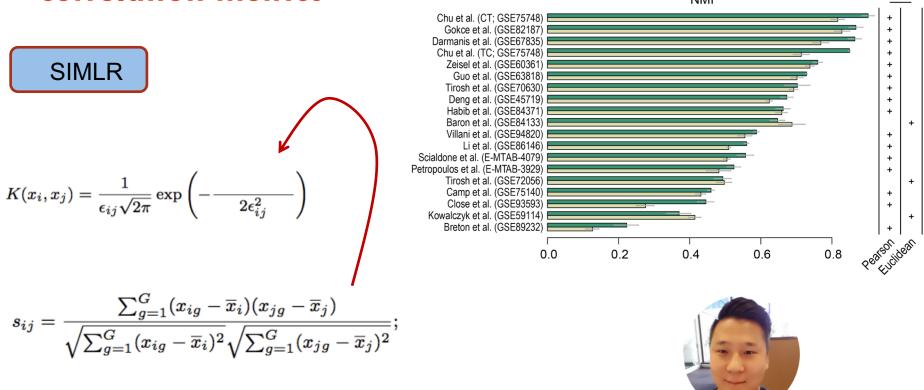
- Different methods make different assumptions, which may or may not be satisfied by your data
- Try a few different ones to understand what makes a method work well for your own data
- We did the same and found <u>similarity metrics</u> has a huge impact on performance of methods

Similarity metric is the core of clustering algorithm



The University of Sydney

scClust: improved clustering methods using correlation metrics



Wang, B., Zhu, J., Pierson, E., Ramazzotti, D., and Batzoglou, S. (2017). Visualization and analysis of single-cell rna-seq data by kernel-based similarity learning. *Nature Methods*, 14(4), 414.

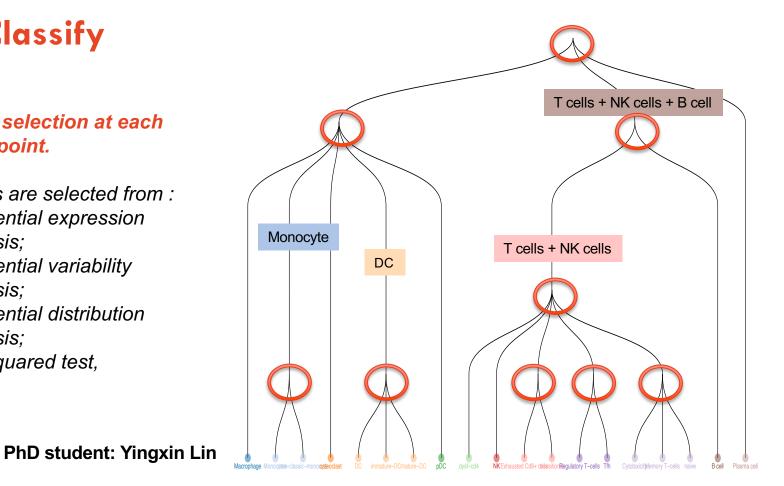
PhD student: Taiyun Kim Page 41

scClassify

Feature selection at each branch point.

Features are selected from :

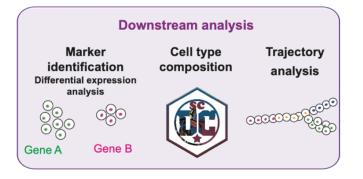
- Differential expression ٠ analysis;
- Differential variability • analysis;
- Differential distribution • analysis;
- Chi-squared test, ٠



cclassi

Downstream analysis

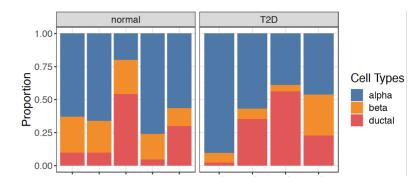
Component 5: Downstream analysis

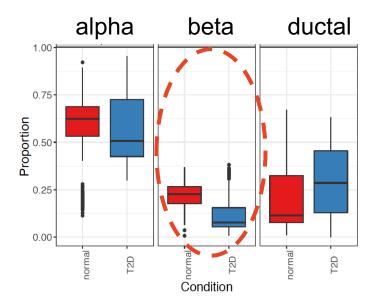


Science questions

- Which genes are differentially expressed between cell types?
- What are the marker genes for each cell type?
- What is the cell type composition?
- Are the cells transitioning from one state to another?

Compare these proportions





Single cell Differential Composition (scDC)

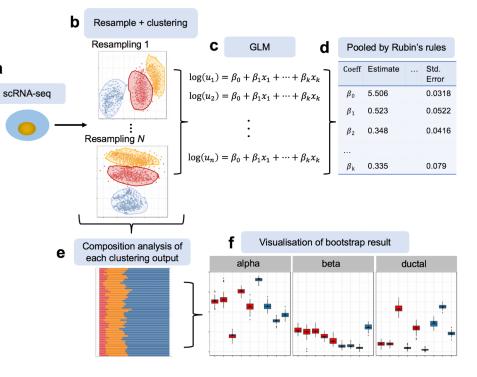
а

scDC simulates *uncertainty* in cell-type proportions via bootstrapping

Main components:

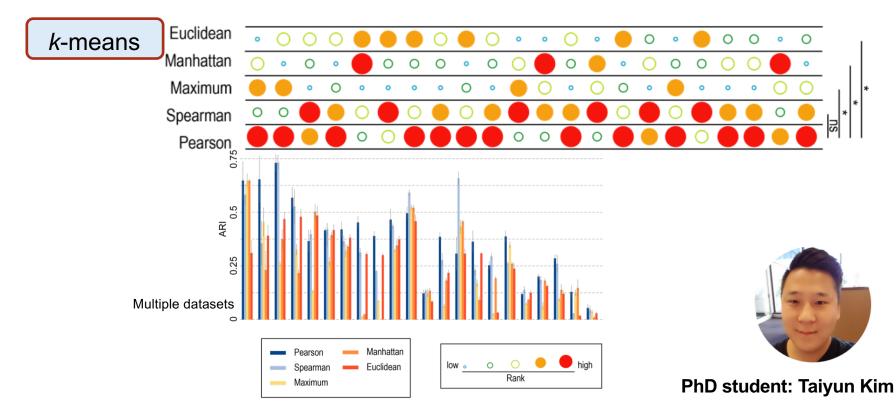
- Sample with replacement from count matrix, stratified by patient
- Cell type identification via clustering (PCA -> Kmeans (Pearson correlation)
- Cell type proportions standard error from bootstrap samples
- Calculation of pooled log-linear model using Rubin's pooled estimate

PhD student: Yue Cao

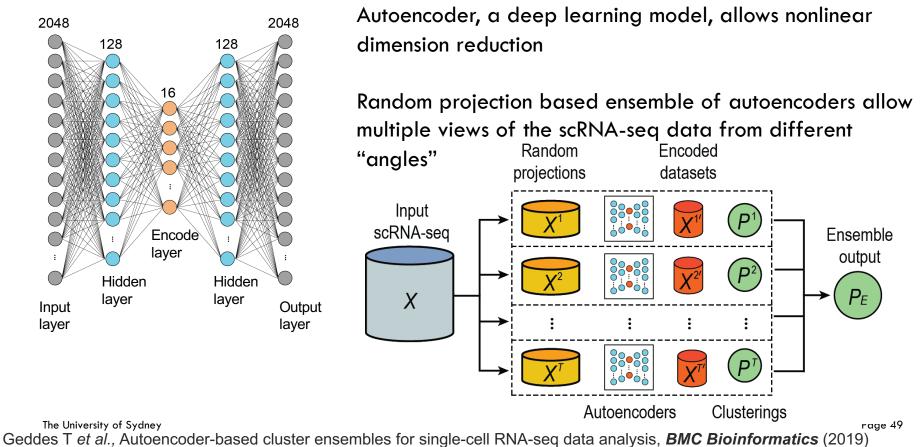


Additional slides

Evaluation results (against the pre-defined cell types)

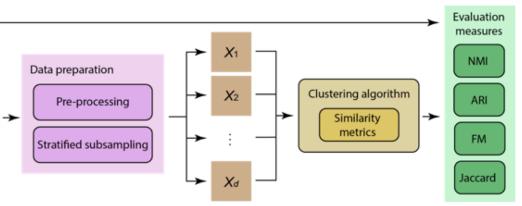


Dimension reduction using an ensemble of autoencoders



Evaluation framework

		'		
Source	Publication	Organism	# cell	# class
GSE45719	Deng et al. (2014)	Mouse	300	8
GSE63818	Guo et al. (2015)	Human	328	37
GSE67835	Darmanis et al. (2015)	Human	420	8
GSE82187	Gokce et al. (2016)	Mouse	705	10
GSE75140	Camp et al. (2015)	Human	734	13
GSE75748 (TC)	Chu et al. (2016)	Human	758	6
GSE84133	Baron et al. (2016)	Mouse	822	13
GSE89232	Breton et al. (2016)	Human	957	4
GSE75748 (CT)	Chu et al. (2016)	Human	1018	7
GSE94820	Villani et al. (2017)	Human	1140	5
E-MTAB-4079	Scialdone et al. (2016)	Mouse	1205	4
GSE84371	Habib et al. (2016)	Mouse	1402	8
GSE59114	Kowalczyk et al. (2015)	Mouse	1428	6
E-MTAB-3929	Petropoulos et al. (2016)	Human	1529	5
GSE93593	Close et al. (2017)	Human	1733	4
GSE86146	Li et al. (2017b)	Human	2621	45
GSE60361	Zeisel et al. (2015)	Mouse	3005	7
GSE70630	Tirosh et al. (2016b)	Human	4347	8
GSE72056	Tirosh et al. (2016a)	Human	4645	7
Broad Portal	Habib et al. (2017)	Mouse	13313	26
Broad Portal	Habib et al. (2017)	Human	14963	19
GSE81905	Shekhar et al. (2016)	Mouse	27499	19



Impact of similarity metrics on singlecell RNA-seq data clustering

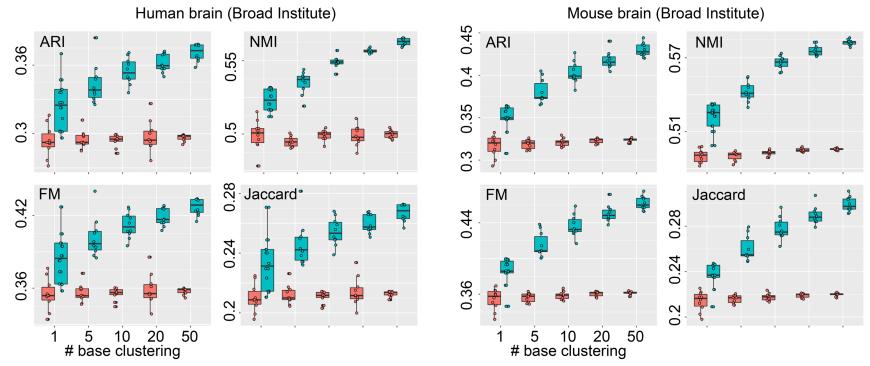
Taiyun Kim, Irene Rui Chen, Yingxin Lin, Andy Yi-Yang Wang, Jean Yee Hwa Yang, Pengyi Yang

Briefings in Bioinformatics, bby076,

Taiyun Kim

Ensemble of autoencoders – does it work (with kmeans)?

Raw input Autoencoder input



Differences between single cell and bulk RNAseq

- Single cell gene expressions show a bimodal expression pattern – abundant genes are either highly expressed or undetected.
- This can be technical (drop-outs) or biological (transcriptional bursts).
- Drop-outs lead to technical zeroes in the data.
- Technical zeroes are due to low capture efficiency in scRNAseq experiments.
- Many methods have been proposed to deal with drop-outs

Differential expression analysis

- Simple statistical test
 - Wilcoxon rank test, t-test
- Methods developed for bulk RNAseq DE
- DESeq2
 - EdgeR
 - Voom-Limma
- scRNA specific
 - MAST
 - DECENT
 - D3E
 - many more!

Trajectory analysis

- Inference on a dynamic process such as cell cycle/differentiation
- Dimensional reduction to learn the key genes
- Trees are then grown to connect the cell types

Saelens, W., Cannoodt, R., Todorov, H. et al. A comparison of single-cell trajectory inference methods. Nat Biotechnol **37**, 547–554 (2019). https://doi.org/10.1038/s41587-019-0071-9

