Normalizes and transforms cell data in preparation for clustering (accepts dataframe, SingleCellExperiment and SpatialExperiment).
Source:R/normalizeCells.R
normalizeCells.Rd
Normalizes and transforms cell data in preparation for clustering (accepts dataframe, SingleCellExperiment and SpatialExperiment).
Usage
normalizeCells(
cells,
markers = NULL,
assayIn = NULL,
assayOut = "norm",
imageID = "imageID",
transformation = NULL,
method = NULL,
cores = 1
)
Arguments
- cells
A Dataframe of SingleCellExperiment or SpatialExperiment containing cells and features to be normalized/transformed
- markers
A list containing the names of cell markers which will be normalized and/or transformed.
- assayIn
If input is a SingleCellExperiment or SpatialExperiment with multiple assays, specify the assay to be normalized and/or transformed.
- assayOut
If input is a SingleCellExperiment or SpatialExperiment, the new of the normalized data.
- imageID
If input is a SingleCellExperiment or SpatialExperiment, this is the name of the image ID variable in order to stratify. cells correctly
- transformation
The transformation/s to be performed, default is NULL, accepted values: 'asinh' and 'sqrt'.
- method
The normalization method/s to be performed, default is NULL, accepted values: 'mean', 'minMax', 'trim99', 'PC1'.
- cores
The number or cores for parallel processing.
Examples
library(cytomapper)
#> Loading required package: EBImage
#> Loading required package: SingleCellExperiment
#> Loading required package: SummarizedExperiment
#> Loading required package: MatrixGenerics
#> Loading required package: matrixStats
#>
#> Attaching package: ‘MatrixGenerics’
#> The following objects are masked from ‘package:matrixStats’:
#>
#> colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
#> colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
#> colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
#> colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
#> colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
#> colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
#> colWeightedMeans, colWeightedMedians, colWeightedSds,
#> colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
#> rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
#> rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
#> rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
#> rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
#> rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
#> rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
#> rowWeightedSds, rowWeightedVars
#> Loading required package: GenomicRanges
#> Loading required package: stats4
#> Loading required package: BiocGenerics
#>
#> Attaching package: ‘BiocGenerics’
#> The following objects are masked from ‘package:stats’:
#>
#> IQR, mad, sd, var, xtabs
#> The following objects are masked from ‘package:base’:
#>
#> Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
#> as.data.frame, basename, cbind, colnames, dirname, do.call,
#> duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
#> lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
#> pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
#> tapply, union, unique, unsplit, which.max, which.min
#> Loading required package: S4Vectors
#>
#> Attaching package: ‘S4Vectors’
#> The following object is masked from ‘package:utils’:
#>
#> findMatches
#> The following objects are masked from ‘package:base’:
#>
#> I, expand.grid, unname
#> Loading required package: IRanges
#>
#> Attaching package: ‘IRanges’
#> The following objects are masked from ‘package:EBImage’:
#>
#> resize, tile
#> Loading required package: GenomeInfoDb
#> Loading required package: Biobase
#> Welcome to Bioconductor
#>
#> Vignettes contain introductory material; view with
#> 'browseVignettes()'. To cite Bioconductor, see
#> 'citation("Biobase")', and for packages 'citation("pkgname")'.
#>
#> Attaching package: ‘Biobase’
#> The following object is masked from ‘package:MatrixGenerics’:
#>
#> rowMedians
#> The following objects are masked from ‘package:matrixStats’:
#>
#> anyMissing, rowMedians
#> The following object is masked from ‘package:EBImage’:
#>
#> channel
#>
#> Attaching package: ‘cytomapper’
#> The following objects are masked from ‘package:Biobase’:
#>
#> channelNames, channelNames<-
data("pancreasSCE")
cells.normalized <- normalizeCells(
cells = pancreasSCE,
markers = c("CD99", "PIN", "CD8a", "CDH"),
assayIn = "counts",
assayOut = "normCounts",
imageID = "ImageNb",
transformation = "asinh",
method = "trim99"
)