Split Sample Indexes into Training and Test Partitions for Cross-validation Taking Into Account Classes.
samplesSplitting.Rd
samplesSplits
Creates two lists of lists. First has training samples, second has test samples for a range
of different cross-validation schemes.
splitsTestInfo
creates a table for tracking the permutation, fold number, or subset of each set
of test samples. Useful for column-binding to the predictions, once they are unlisted into a vector.
Usage
samplesSplits(
samplesSplits = c("k-Fold", "Permute k-Fold", "Permute Percentage Split",
"Leave-k-Out"),
permutations = 100,
folds = 5,
percentTest = 25,
leave = 2,
outcome
)
splitsTestInfo(
samplesSplits = c("k-Fold", "Permute k-Fold", "Permute Percentage Split",
"Leave-k-Out"),
permutations = 100,
folds = 5,
percentTest = 25,
leave = 2,
splitsList
)
Arguments
- samplesSplits
Default:
"k-Fold"
. One of"k-Fold"
,"Permute k-Fold"
,"Permute Percentage Split"
,"Leave-k-Out"
.- permutations
Default:
100
. An integer. The number of times the samples are permuted before splitting (repetitions).- folds
Default:
5
. An integer. The number of folds to which the samples are partitioned to. Only relevant ifsamplesSplits
is"k-Fold"
or"Permute k-Fold"
.- percentTest
Default:
25
. A positive number between 0 and 100. The percentage of samples to keep for the test partition. Only relevant ifsamplesSplits
is"Permute Percentage Split"
.- leave
Default:
2
. An integer. The number of samples to keep for the test set in leave-k-out cross-validation. Only relevant ifsamplesSplits
is"Leave-k-Out"
.- outcome
A
factor
vector orSurv
object containing the samples to be partitioned.- splitsList
The return value of the function
samplesSplits
.
Value
For samplesSplits
, two lists of the same length. First is training partitions. Second is test partitions.
For splitsTestInfoTable
, a table with a subset of columns "permutation"
, "fold"
and "subset"
, depending on the cross-validation scheme specified.
Examples
classes <- factor(rep(c('A', 'B'), c(15, 5)))
splitsList <-samplesSplits(permutations = 1, outcome = classes)
splitsList
#> $train
#> $train[[1]]
#> [1] 5 6 3 19 2 12 13 20 1 15 8 16 4 9 11 17
#>
#> $train[[2]]
#> [1] 7 14 10 18 2 12 13 20 1 15 8 16 4 9 11 17
#>
#> $train[[3]]
#> [1] 7 14 10 18 5 6 3 19 1 15 8 16 4 9 11 17
#>
#> $train[[4]]
#> [1] 7 14 10 18 5 6 3 19 2 12 13 20 4 9 11 17
#>
#> $train[[5]]
#> [1] 7 14 10 18 5 6 3 19 2 12 13 20 1 15 8 16
#>
#>
#> $test
#> $test[[1]]
#> [1] 7 14 10 18
#>
#> $test[[2]]
#> [1] 5 6 3 19
#>
#> $test[[3]]
#> [1] 2 12 13 20
#>
#> $test[[4]]
#> [1] 1 15 8 16
#>
#> $test[[5]]
#> [1] 4 9 11 17
#>
#>
splitsTestInfo(permutations = 1, splitsList = splitsList)
#> fold
#> [1,] 1
#> [2,] 1
#> [3,] 1
#> [4,] 1
#> [5,] 2
#> [6,] 2
#> [7,] 2
#> [8,] 2
#> [9,] 3
#> [10,] 3
#> [11,] 3
#> [12,] 3
#> [13,] 4
#> [14,] 4
#> [15,] 4
#> [16,] 4
#> [17,] 5
#> [18,] 5
#> [19,] 5
#> [20,] 5