Skip to contents
-
ClassifyResult
ClassifyResult-class
ClassifyResult,DataFrame,character,characterOrDataFrame-method
show,ClassifyResult-method
sampleNames
sampleNames,ClassifyResult-method
predictions
predictions,ClassifyResult-method
actualOutcome
actualOutcome,ClassifyResult-method
features
features,ClassifyResult-method
models
models,ClassifyResult-method
finalModel
finalModel,ClassifyResult-method
performance
performance,ClassifyResult-method
tunedParameters
tunedParameters,ClassifyResult-method
totalPredictions
totalPredictions,ClassifyResult-method
ClassifyResult,DataFrame,character-method
allFeatureNames
allFeatureNames,ClassifyResult-method
chosenFeatureNames
chosenFeatureNames,ClassifyResult-method
- Container for Storing Classification Results
-
CrossValParams()
- Parameters for Cross-validation Specification
-
FeatureSetCollection-class
FeatureSetCollection
FeatureSetCollection,list-method
length,FeatureSetCollection-method
show,FeatureSetCollection-method
[,FeatureSetCollection,numeric,missing,ANY-method
[[,FeatureSetCollection,ANY,missing-method
- Container for Storing A Collection of Sets
-
HuRI
interactors
- Human Reference Interactome
-
METABRICclinical
clinical
- METABRIC Clinical Data
-
ModellingParams()
- Parameters for Data Modelling Specification
-
PredictParams
PredictParams-class
PredictParams,missing-method
PredictParams,characterOrFunction-method
show,PredictParams-method
- Parameters for Classifier Prediction
-
ROCplot(<ClassifyResult>)
ROCplot(<list>)
- Plot Receiver Operating Curve Graphs for Classification Results
-
SelectParams
SelectParams-class
SelectParams,missing-method
SelectParams,characterOrList-method
show,SelectParams-method
- Parameters for Feature Selection
-
TrainParams
TrainParams-class
TrainParams,missing-method
TrainParams,characterOrFunction-method
show,TrainParams-method
- Parameters for Classifier Training
-
TransformParams
TransformParams-class
TransformParams,ANY-method
TransformParams,character-method
show,TransformParams-method
- Parameters for Data Transformation
-
asthma
measurements
classes
- Asthma RNA Abundance and Patient Classes
-
available()
- List Available Feature Selection and Classification Approaches
-
calcExternalPerformance(<factor>,<factor>)
calcExternalPerformance(<Surv>,<numeric>)
calcExternalPerformance(<factor>,<tabular>)
calcCVperformance(<ClassifyResult>)
performanceTable()
- Add Performance Calculations to a ClassifyResult Object or Calculate for a Pair of Factor Vectors
-
colCoxTests()
- A function to perform fast or standard Cox proportional hazard model tests.
-
crissCrossPlot()
- A function to plot the output of the crissCrossValidate function.
-
crissCrossValidate()
- A function to perform pairwise cross validation
-
crossValidate(<DataFrame>)
crossValidate(<MultiAssayExperimentOrList>)
crossValidate(<data.frame>)
crossValidate(<matrix>)
train(<matrix>)
train(<data.frame>)
train(<DataFrame>)
train(<list>)
train(<MultiAssayExperiment>)
predict(<trainedByClassifyR>)
- Cross-validation to evaluate classification performance.
-
distribution
distribution,ClassifyResult-method
- Get Frequencies of Feature Selection or Sample-wise Predictive Performance
-
edgesToHubNetworks()
- Convert a Two-column Matrix or Data Frame into a Hub Node List
-
featureSetSummary(<matrix>)
featureSetSummary(<DataFrame>)
featureSetSummary(<MultiAssayExperiment>)
- Transform a Table of Feature Abundances into a Table of Feature Set Abundances.
-
interactorDifferences(<matrix>)
interactorDifferences(<DataFrame>)
interactorDifferences(<MultiAssayExperiment>)
- Convert Individual Features into Differences Between Binary Interactors Based on Known Sub-networks
-
performancePlot(<ClassifyResult>)
performancePlot(<list>)
- Plot Performance Measures for Various Classifications
-
plotFeatureClasses(<matrix>)
plotFeatureClasses(<DataFrame>)
plotFeatureClasses(<MultiAssayExperiment>)
- Plot Density, Scatterplot, Parallel Plot or Bar Chart for Features By Class
-
precisionPathwaysTrain(<MultiAssayExperimentOrList>)
precisionPathwaysPredict(<PrecisionPathways>,<MultiAssayExperimentOrList>)
- Precision Pathways for Sample Prediction Based on Prediction Confidence.
-
calcCostsAndPerformance()
summary(<PrecisionPathways>)
bubblePlot()
flowchart()
strataPlot()
- Various Functions for Evaluating Precision Pathways
-
prepareData(<matrix>)
prepareData(<data.frame>)
prepareData(<DataFrame>)
prepareData(<MultiAssayExperiment>)
prepareData(<list>)
- Convert Different Data Classes into DataFrame and Filter Features
-
rankingPlot(<ClassifyResult>)
rankingPlot(<list>)
- Plot Pair-wise Overlap of Ranked Features
-
runTest(<matrix>)
runTest(<DataFrame>)
runTest(<MultiAssayExperiment>)
- Perform a Single Classification
-
runTests(<matrix>)
runTests(<DataFrame>)
runTests(<MultiAssayExperiment>)
- Reproducibly Run Various Kinds of Cross-Validation
-
samplesMetricMap(<ClassifyResult>)
samplesMetricMap(<list>)
samplesMetricMap(<matrix>)
- Plot a Grid of Sample-wise Predictive Metrics
-
selectionPlot(<ClassifyResult>)
selectionPlot(<list>)
- Plot Pair-wise Overlap, Variable Importance or Selection Size Distribution of Selected Features