Skip to contents
-
ClassifyResult ClassifyResult-class ClassifyResult,DataFrame,character,characterOrDataFrame-method show,ClassifyResult-method sampleNames sampleNames,ClassifyResult-method predictions predictions,ClassifyResult-method actualOutcome actualOutcome,ClassifyResult-method features features,ClassifyResult-method models models,ClassifyResult-method finalModel finalModel,ClassifyResult-method performance performance,ClassifyResult-method tunedParameters tunedParameters,ClassifyResult-method totalPredictions totalPredictions,ClassifyResult-method ClassifyResult,DataFrame,character-method allFeatureNames allFeatureNames,ClassifyResult-method chosenFeatureNames chosenFeatureNames,ClassifyResult-method
- Container for Storing Classification Results
-
CrossValParams()
- Parameters for Cross-validation Specification
-
FeatureSetCollection-class FeatureSetCollection FeatureSetCollection,list-method length,FeatureSetCollection-method show,FeatureSetCollection-method [,FeatureSetCollection,numeric,missing,ANY-method [[,FeatureSetCollection,ANY,missing-method
- Container for Storing A Collection of Sets
-
HuRI interactors
- Human Reference Interactome
-
METABRICclinical clinical
- METABRIC Clinical Data
-
ModellingParams()
- Parameters for Data Modelling Specification
-
PredictParams PredictParams-class PredictParams,missing-method PredictParams,characterOrFunction-method show,PredictParams-method
- Parameters for Classifier Prediction
-
ROCplot(<ClassifyResult>) ROCplot(<list>)
- Plot Receiver Operating Curve Graphs for Classification Results
-
SelectParams SelectParams-class SelectParams,missing-method SelectParams,characterOrList-method show,SelectParams-method
- Parameters for Feature Selection
-
TrainParams TrainParams-class TrainParams,missing-method TrainParams,characterOrFunction-method show,TrainParams-method
- Parameters for Classifier Training
-
TransformParams TransformParams-class TransformParams,ANY-method TransformParams,character-method show,TransformParams-method
- Parameters for Data Transformation
-
asthma measurements classes
- Asthma RNA Abundance and Patient Classes
-
available()
- List Available Feature Selection and Classification Approaches
-
calcExternalPerformance(<factor>,<factor>) calcExternalPerformance(<Surv>,<numeric>) calcExternalPerformance(<factor>,<tabular>) calcCVperformance(<ClassifyResult>) performanceTable() easyHard(<MultiAssayExperimentOrList>)
- Add Performance Calculations to a ClassifyResult Object or Calculate for a Pair of Factor Vectors
-
colCoxTests()
- A function to perform fast or standard Cox proportional hazard model tests.
-
crissCrossPlot()
- A function to plot the output of the crissCrossValidate function.
-
crissCrossValidate()
- A function to perform pairwise cross validation
-
crossValidate(<DataFrame>) crossValidate(<MultiAssayExperimentOrList>) crossValidate(<data.frame>) crossValidate(<matrix>) train(<matrix>) train(<data.frame>) train(<DataFrame>) train(<list>) train(<MultiAssayExperiment>) predict(<trainedByClassifyR>)
- Cross-validation to evaluate classification performance.
-
distribution distribution,ClassifyResult-method
- Get Frequencies of Feature Selection or Sample-wise Predictive Performance
-
edgesToHubNetworks()
- Convert a Two-column Matrix or Data Frame into a Hub Node List
-
featureSetSummary(<matrix>) featureSetSummary(<DataFrame>) featureSetSummary(<MultiAssayExperiment>)
- Transform a Table of Feature Abundances into a Table of Feature Set Abundances.
-
interactorDifferences(<matrix>) interactorDifferences(<DataFrame>) interactorDifferences(<MultiAssayExperiment>)
- Convert Individual Features into Differences Between Binary Interactors Based on Known Sub-networks
-
performancePlot(<ClassifyResult>) performancePlot(<list>)
- Plot Performance Measures for Various Classifications
-
plotFeatureClasses(<matrix>) plotFeatureClasses(<DataFrame>) plotFeatureClasses(<MultiAssayExperiment>)
- Plot Density, Scatterplot, Parallel Plot or Bar Chart for Features By Class
-
precisionPathwaysTrain(<MultiAssayExperimentOrList>) precisionPathwaysPredict(<PrecisionPathways>,<MultiAssayExperimentOrList>)
- Precision Pathways for Sample Prediction Based on Prediction Confidence.
-
calcCostsAndPerformance() summary(<PrecisionPathways>) bubblePlot() flowchart() strataPlot()
- Various Functions for Evaluating Precision Pathways
-
prepareData(<matrix>) prepareData(<data.frame>) prepareData(<DataFrame>) prepareData(<MultiAssayExperiment>) prepareData(<list>)
- Convert Different Data Classes into DataFrame and Filter Features
-
rankingPlot(<ClassifyResult>) rankingPlot(<list>)
- Plot Pair-wise Overlap of Ranked Features
-
runTest(<matrix>) runTest(<DataFrame>) runTest(<MultiAssayExperiment>)
- Perform a Single Classification
-
runTests(<matrix>) runTests(<DataFrame>) runTests(<MultiAssayExperiment>)
- Reproducibly Run Various Kinds of Cross-Validation
-
samplesMetricMap(<ClassifyResult>) samplesMetricMap(<list>) samplesMetricMap(<matrix>)
- Plot a Grid of Sample-wise Predictive Metrics
-
samplesSplits() splitsTestInfo()
- Split Sample Indexes into Training and Test Partitions for Cross-validation Taking Into Account Classes.
-
selectionPlot(<ClassifyResult>) selectionPlot(<list>)
- Plot Pair-wise Overlap, Variable Importance or Selection Size Distribution of Selected Features