Skip to contents

stabMap performs mosaic data integration by first building a mosaic data topology, and for each reference dataset, traverses the topology to project and predict data onto a common principal component (PC) or linear discriminant (LD) embedding.

Usage

stabMap(
  assay_list,
  labels_list = NULL,
  reference_list = NULL,
  reference_features_list = lapply(assay_list, rownames),
  reference_scores_list = NULL,
  ncomponentsReference = 50,
  ncomponentsSubset = 50,
  suppressMessages = TRUE,
  projectAll = FALSE,
  restrictFeatures = FALSE,
  maxFeatures = 1000,
  plot = TRUE,
  scale.center = TRUE,
  scale.scale = TRUE,
  SE_assay_names = "logcounts",
  BPPARAM = SerialParam(),
  verbose = TRUE
)

Arguments

assay_list

A list of data matrices with rownames (features) specified.

labels_list

(optional) named list containing cell labels

reference_list

Named list containing logical values whether the data matrix should be considered as a reference dataset, alternatively a character vector containing the names of the reference data matrices. If NULL, defaults to: sapply(names(assay_list), function(x) TRUE, simplify = FALSE)

reference_features_list

List of features to consider as reference data (default is all available features).

reference_scores_list

Named list of reference scores (default NULL). If provided, matrix of cells (rows with rownames given) and dimensions (columns with colnames given) are used as the reference low-dimensional embedding to target, as opposed to performing PCA or LDA on the input reference data.

ncomponentsReference

Number of principal components for embedding reference data, given either as an integer or a named list for each reference dataset.

ncomponentsSubset

Number of principal components for embedding query data prior to projecting to the reference, given either as an integer or a named list for each reference dataset.

suppressMessages

Logical whether to suppress messages (default TRUE).

projectAll

Logical whether to re-project reference data along with query (default FALSE).

restrictFeatures

logical whether to restrict to features used in dimensionality reduction of reference data (default FALSE). Overall it's recommended that this be FALSE for single-hop integrations and TRUE for multi-hop integrations.

maxFeatures

Maximum number of features to consider for predicting principal component scores (default 1000).

plot

Logical whether to plot mosaic data UpSet plot and mosaic data topology networks (default TRUE).

scale.center

Logical whether to re-center data to a mean of 0 (default FALSE).

scale.scale

Logical whether to re-scale data to standard deviation of 1 (default FALSE).

SE_assay_names

Either a string indicating the name of the assays for the SummarizedExperiment objects in assay_list or a named list of assay names, where the names corrispond to the names SE objects in assay_list (default "logcounts")

BPPARAM

a BiocParallelParam object specifying how parallelisation should be performed

verbose

Logical whether console output is provided (default TRUE)

Value

matrix containing common embedding with rows corresponding to cells, and columns corresponding to PCs or LDs for reference dataset(s).

Examples

set.seed(2021)
assay_list <- mockMosaicData()
lapply(assay_list, dim)
#> $D1
#> [1] 150  50
#> 
#> $D2
#> [1] 150  50
#> 
#> $D3
#> [1] 150  50
#> 

# specify which datasets to use as reference coordinates
reference_list <- c("D1", "D3")

# specify some sample labels to distinguish using linear discriminant
# analysis (LDA)
labels_list <- list(
  D1 = rep(letters[1:5], length.out = ncol(assay_list[["D1"]]))
)

# examine the topology of this mosaic data integration
mosaicDataUpSet(assay_list)

plot(mosaicDataTopology(assay_list))


# stabMap
out <- stabMap(assay_list,
  reference_list = reference_list,
  labels_list = labels_list,
  ncomponentsReference = 20,
  ncomponentsSubset = 20
)

#> treating "D1" as reference
#> generating embedding for path with reference "D1": "D1"
#> generating embedding for path with reference "D1": "D2" -> "D1"
#> generating embedding for path with reference "D1": "D3" -> "D2" -> "D1"
#> labels provided for "D1", adding LD components
#> generating embedding for path with reference "D1": "D1"
#> generating embedding for path with reference "D1": "D2" -> "D1"
#> generating embedding for path with reference "D1": "D3" -> "D2" -> "D1"
#> treating "D3" as reference
#> generating embedding for path with reference "D3": "D3"
#> generating embedding for path with reference "D3": "D2" -> "D3"
#> generating embedding for path with reference "D3": "D1" -> "D2" -> "D3"

head(out)
#>               D1_PC1     D1_PC2     D1_PC3       D1_PC4      D1_PC5     D1_PC6
#> D1_cell_1  2.6270969 -3.1709928  4.0506445 -3.609130459  1.43056606 -2.5013943
#> D1_cell_2 -4.5057485  0.5752083  0.8340238 -1.014823114  0.63151929 -1.4937527
#> D1_cell_3  0.6226309 -1.5472376  2.6103086 -0.018643114 -2.81536539 -1.0940201
#> D1_cell_4 -4.2263350 -2.0444978 -0.5356968 -3.453648014  2.92566847  0.2716939
#> D1_cell_5  3.8947019  0.9106738 -3.6039996  0.004893567 -2.30739074 -0.3341585
#> D1_cell_6  2.0177813  3.5252245 -4.1753395 -1.148906355  0.05251646  1.8700432
#>                D1_PC7     D1_PC8     D1_PC9    D1_PC10    D1_PC11    D1_PC12
#> D1_cell_1  0.24764751  0.5873167 -2.3067376  3.2015090 -0.4526165 -1.2460048
#> D1_cell_2  0.25444661 -0.7616007 -2.4968763  0.1378678  2.8105718  4.8446448
#> D1_cell_3 -0.03710635  1.5760269 -0.3924504  1.1906449 -3.6871124 -3.7681881
#> D1_cell_4  1.69233366  0.7617611  4.8401743 -2.0105921 -1.1875114 -1.5079628
#> D1_cell_5  4.31581421  0.9061911 -0.9850855  1.2802993 -1.6064210  0.3283823
#> D1_cell_6 -3.75335901 -0.4612008 -2.3790983  1.2309207 -2.1421033 -0.9491438
#>              D1_PC13   D1_PC14   D1_PC15     D1_PC16    D1_PC17    D1_PC18
#> D1_cell_1 -3.1375299  4.378068 -3.444451 -1.78898621  2.2372443  0.7444908
#> D1_cell_2 -0.7939143  2.721340 -0.377106 -0.09414872 -1.4999731 -4.7338701
#> D1_cell_3  0.4814744 -3.724470 -1.594450 -1.49311501 -1.9097362 -1.1429568
#> D1_cell_4 -3.0741564  1.146310  1.966764  2.49615083  1.8948504 -0.2249584
#> D1_cell_5 -0.2501072 -1.337008  1.229278 -2.45020979 -0.6301791 -1.0275208
#> D1_cell_6  1.9202294 -1.207617  2.005668 -0.81970304  1.8491050  0.7083563
#>              D1_PC19    D1_PC20     D1_LD1    D1_LD2     D1_LD3      D1_LD4
#> D1_cell_1  1.2420356 -2.6537437 -0.3927678 -1.674139 -1.1392196  0.01773841
#> D1_cell_2  1.5838926 -0.7553650  1.2724435  0.793653  1.1154764  1.00840563
#> D1_cell_3 -2.0095487 -1.4511791 -1.4536953  1.599853 -0.9361014  0.06013095
#> D1_cell_4 -0.2146626  1.1997056  1.1922330 -1.336241 -0.0218638  0.50445480
#> D1_cell_5  2.5546764 -2.1599689 -1.8890462 -1.191700 -0.1356699  0.66198248
#> D1_cell_6 -1.4360245 -0.1285278  0.1478705 -1.261443  0.7427569 -0.93665942
#>               D3_PC1     D3_PC2     D3_PC3     D3_PC4    D3_PC5    D3_PC6
#> D1_cell_1  -5.092261 -8.2508106  -3.425651  0.4690352 -1.364690  2.321041
#> D1_cell_2 -12.595956 -0.2080118  14.737664  6.5019626 -2.625472  5.032621
#> D1_cell_3  11.306185  1.9951329 -19.052218 -7.5799107  4.386649 -7.594878
#> D1_cell_4  23.365322  2.8256687  -6.699824 -3.8222222 12.100088 -2.068096
#> D1_cell_5   3.486375 -1.6333790 -12.325699 -6.0603731 -6.831641 -1.613613
#> D1_cell_6   4.529259 -2.8107622  -5.415551 12.4524323  4.605050 -3.963519
#>               D3_PC7     D3_PC8     D3_PC9    D3_PC10   D3_PC11    D3_PC12
#> D1_cell_1  3.8764270  4.0883336  -2.428012   0.777225  2.710615 -2.2746418
#> D1_cell_2  3.6141002  6.0370627   9.409343   7.649837 -7.823011 -0.9906947
#> D1_cell_3 -2.5210622 -4.6332622  -9.397545 -12.032917 10.564143  2.8743073
#> D1_cell_4 -0.1166204  0.9251495 -12.568801  -9.028202  1.519507 -0.4224104
#> D1_cell_5 -7.9823973 -5.9523726  -9.895665  -3.196059 12.193287  0.4332797
#> D1_cell_6  9.7299622  3.6624287   2.562550   2.438239 -2.061845  3.2577935
#>              D3_PC13    D3_PC14    D3_PC15     D3_PC16   D3_PC17   D3_PC18
#> D1_cell_1 -0.8287253   2.576194  -1.231400  -2.2388515  1.976501  5.664104
#> D1_cell_2  6.5423034  -7.724872   4.553026  14.3713414 -8.397892 -2.623366
#> D1_cell_3 -7.2103254  13.081504  -4.107559 -17.0461472 10.751740  1.107026
#> D1_cell_4 -9.1727975  -3.286657 -11.690377  -4.8885937 -6.230477  2.364442
#> D1_cell_5 -1.9820459  14.167342   1.655575  -9.5230610 12.926554  2.182250
#> D1_cell_6 -3.3057188 -14.400471  -8.922535   0.4140863  4.918437 -2.660325
#>              D3_PC19    D3_PC20
#> D1_cell_1 -1.6946016  -2.072674
#> D1_cell_2  4.6159188  -2.637280
#> D1_cell_3 -7.0317522   5.098998
#> D1_cell_4  0.6198541 -14.316265
#> D1_cell_5 -7.6733369  10.684121
#> D1_cell_6  2.0122155  -5.141146