Skip to contents

Generate local indicators of spatial association

Usage

lisa(
  cells,
  Rs = NULL,
  BPPARAM = BiocParallel::SerialParam(),
  window = "convex",
  window.length = NULL,
  whichParallel = "imageID",
  sigma = NULL,
  lisaFunc = "K",
  minLambda = 0.05,
  spatialCoords = c("x", "y"),
  cellType = "cellType",
  imageID = "imageID"
)

Arguments

cells

A SingleCellExperiment, SpatialExperiment or data frame that contains at least the variables x and y, giving the coordinates of each cell, imageID and cellType.

Rs

A vector of the radii that the measures of association should be calculated.

BPPARAM

A BiocParallelParam object.

window

Should the window around the regions be 'square', 'convex' or 'concave'.

window.length

A tuning parameter for controlling the level of concavity when estimating concave windows.

whichParallel

Should the function use parallization on the imageID or the cellType.

sigma

A numeric variable used for scaling when filting inhomogeneous L-curves.

lisaFunc

Either "K" or "L" curve.

minLambda

Minimum value for density for scaling when fitting inhomogeneous L-curves.

spatialCoords

The columns which contain the x and y spatial coordinates.

cellType

The column which contains the cell types.

imageID

The column which contains image identifiers.

Value

A matrix of LISA curves

Examples

library(spicyR)
library(SingleCellExperiment)
#> Loading required package: SummarizedExperiment
#> Loading required package: MatrixGenerics
#> Loading required package: matrixStats
#> 
#> Attaching package: ‘MatrixGenerics’
#> The following objects are masked from ‘package:matrixStats’:
#> 
#>     colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
#>     colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
#>     colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
#>     colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
#>     colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
#>     colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
#>     colWeightedMeans, colWeightedMedians, colWeightedSds,
#>     colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
#>     rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
#>     rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
#>     rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
#>     rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
#>     rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
#>     rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
#>     rowWeightedSds, rowWeightedVars
#> Loading required package: GenomicRanges
#> Loading required package: stats4
#> Loading required package: BiocGenerics
#> 
#> Attaching package: ‘BiocGenerics’
#> The following objects are masked from ‘package:stats’:
#> 
#>     IQR, mad, sd, var, xtabs
#> The following objects are masked from ‘package:base’:
#> 
#>     Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
#>     as.data.frame, basename, cbind, colnames, dirname, do.call,
#>     duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
#>     lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
#>     pmin.int, rank, rbind, rownames, sapply, saveRDS, setdiff, table,
#>     tapply, union, unique, unsplit, which.max, which.min
#> Loading required package: S4Vectors
#> 
#> Attaching package: ‘S4Vectors’
#> The following object is masked from ‘package:utils’:
#> 
#>     findMatches
#> The following objects are masked from ‘package:base’:
#> 
#>     I, expand.grid, unname
#> Loading required package: IRanges
#> Loading required package: GenomeInfoDb
#> Loading required package: Biobase
#> Welcome to Bioconductor
#> 
#>     Vignettes contain introductory material; view with
#>     'browseVignettes()'. To cite Bioconductor, see
#>     'citation("Biobase")', and for packages 'citation("pkgname")'.
#> 
#> Attaching package: ‘Biobase’
#> The following object is masked from ‘package:MatrixGenerics’:
#> 
#>     rowMedians
#> The following objects are masked from ‘package:matrixStats’:
#> 
#>     anyMissing, rowMedians
# Read in data
isletFile <- system.file("extdata", "isletCells.txt.gz", package = "spicyR")
cells <- read.table(isletFile, header = TRUE)
cellExp <- SingleCellExperiment(
  assay = list(intensities = t(cells[, grepl(names(cells), pattern = "Intensity_")])),
  colData = cells[, !grepl(names(cells), pattern = "Intensity_")]
)

# Cluster cell types
markers <- t(assay(cellExp, "intensities"))
kM <- kmeans(markers, 8)
colData(cellExp)$cluster <- paste("cluster", kM$cluster, sep = "")

# Generate LISA
lisaCurves <- lisa(
  cellExp,
  spatialCoords = c("Location_Center_X", "Location_Center_Y"),
  cellType = "cluster", imageID = "ImageNumber"
)
#> Generating local L-curves.

# Cluster the LISA curves
kM <- kmeans(lisaCurves, 2)