Function reference
-
example_scrnaseq
- Example of scRNA-seq data
-
get_num_cell_per_spot()
- Estimate a relative number of cells per spot for spatial transcriptomics data
-
remove_mito_ribo()
- Remove mitochondrial and ribosomal genes, and other highly correlated genes
-
run_CCI()
- Generate cell cell communication score
-
run_L_function()
- Generate L stats
-
run_Morans_I()
- Generate Moran's I
-
run_association_study_report()
- Create an association study report in HTML format
-
run_celltype_interaction()
- Generate cell type interaction
-
run_gene_cor()
- Generate overall aggregated gene correlation
-
run_gene_cor_celltype()
- Generate cell type specific gene expression correlation
-
run_gene_mean()
- Generate overall aggregated mean expression
-
run_gene_mean_celltype()
- Generate cell type specific gene mean expression
-
run_gene_prop()
- Generate overall aggregated gene proportion expression
-
run_gene_prop_celltype()
- Generate cell type specific gene proportion expression
-
run_nn_correlation()
- Generate nearest neighbour correlation
-
run_pathway_gsva()
- Generate pathway score using gene set enrichement analysis
-
run_pathway_mean()
- Generate pathway score using expression level
-
run_pathway_prop()
- Generate pathway score using proportion of expression
-
run_proportion_logit()
- Generate cell type proportions, with logit transformation
-
run_proportion_ratio()
- Generate cell type proportion ratio
-
run_proportion_raw()
- Generate cell type proportion raw
-
scFeatures()
- Wrapper function to run all feature types in scFeatures
-
scfeatures_result
- Example of scFeatures() output