Function reference
-
example_scrnaseq - Example of scRNA-seq data
-
get_num_cell_per_spot() - Estimate a relative number of cells per spot for spatial transcriptomics data
-
remove_mito_ribo() - Remove mitochondrial and ribosomal genes, and other highly correlated genes
-
run_CCI() - Generate cell cell communication score
-
run_L_function() - Generate L stats
-
run_Morans_I() - Generate Moran's I
-
run_association_study_report() - Create an association study report in HTML format
-
run_celltype_interaction() - Generate cell type interaction
-
run_gene_cor() - Generate overall aggregated gene correlation
-
run_gene_cor_celltype() - Generate cell type specific gene expression correlation
-
run_gene_mean() - Generate overall aggregated mean expression
-
run_gene_mean_celltype() - Generate cell type specific gene mean expression
-
run_gene_prop() - Generate overall aggregated gene proportion expression
-
run_gene_prop_celltype() - Generate cell type specific gene proportion expression
-
run_nn_correlation() - Generate nearest neighbour correlation
-
run_pathway_gsva() - Generate pathway score using gene set enrichement analysis
-
run_pathway_mean() - Generate pathway score using expression level
-
run_pathway_prop() - Generate pathway score using proportion of expression
-
run_proportion_logit() - Generate cell type proportions, with logit transformation
-
run_proportion_ratio() - Generate cell type proportion ratio
-
run_proportion_raw() - Generate cell type proportion raw
-
scFeatures() - Wrapper function to run all feature types in scFeatures
-
scfeatures_result - Example of scFeatures() output